APPLICATION OF POISSON REGRESSION IN MODELING THE NUMBER OF DENGUE CASES SUFFERERS BASED ON SOCIODEMOGRAPHIC AND TEMPERATURE IN INDONESIA

Oscar Oscar, Pamela Pamela, Ranny Febrianti, Edwin Setiawan Nugraha

Abstract


Indonesia is one of the countries with high dengue cases. Dengue dengue is an acute disease with clinical manifestations of the bleeding that causes shock that leads to death. Dengue or Demam Berdarah is a type of disease caused by one out of four dengue viruses. This disease is highly contagious. The source of the infection is originally coming from Aedes aegypti and Aedes albopictus mosquito bite. Some of the factors that are known to influence dengue cases include home environment, biological environment, and social environment. With Poisson regression, we connect other factors that have possible risk in dengue cases. In these cases, we used data on dengue cases 2015 in Indonesia. Our analysis with help of R software shows that poverty and temperature will make a significant contribution to the number of dengue 2015 cases in Indonesia. Every 1% increase in the percentage of poverty will cause a decrease in dengue cases to exp (-0.04449) = 0.9564 times from the initial DHF case assuming other predictor variables are constant. Every 10 Celsius increase in temperature will cause an increase in DHF cases to exp (0.206) = 1,306 times from the initial dengue case assuming the other predictor variables are constant. This research is expected to help the health sector and government in dengue control in Indonesia.

Full Text:

PDF

References


Badan Pusat Statistik. (2015). Kemiskinan, Kepadatan Penduduk, Kasus DBD 2015. Jakarta: Badan Pusat Statistik

Sukohar A. 2014. Demam berdarah dengue. Medula. Bandar Lampung: Fakultas Kedokteran Universitas Lampung.2(2):1-14.

Widiyanto T. 2007. Kajian manajemen lingkungan terhadap kejadian demam berdarah dengue (DBD) di kota purwokerto jawa tengah. Semarang: Universitas Diponegoro.Page: 8-37.

Prasetyani, R.D. 2015. Faktor-Faktor yang Berhubungan dengan Kejadian Demam Berdarah Dengue. Bandar Lampung: Fakultas Kedokteran Universitas Lampung.

Desniawati F. 2014. Pelaksanaan 3M Plus Terhadap Keberadaan Larva Aedes Aegypti di Wilayah Kerja Puskesmas Ciputat Kota Tangerang Selatan Bulan Mei-Juni 2014. Jakarta: Universitas Islam Negeri Syarif Hidayatullah, Page: 8-38.

Marta Sundari, & Pardomuan Robinson Sihombing. (2021). PENANGANAN OVERDISPERSI PADA REGRESI POISSON: (Studi Kasus: Pengaruh Faktor Iklim Terhadap Jumlah Penderita Penyakit Demam Berdarah di Kota Bogor). Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 2(1), 1-9. https://doi.org/10.46306/lb.v2i1.48

Astuti, E. P., Fuadzy, H., & Prasetyowati, H. (2016). Pengaruh Kesehatan Lingkungan Pemukiman Terhadap Kejadian Demam Berdarah Dengue Berdasarkan Model Generalized Poisson Regression di Jawa Barat (Analisis Lanjut Riskesdas Tahun 2013). Bul Penelit Sist Kesehat. 2016; 19 (1): 109–117. Bul Penelit Sist Kesehat, 19(1), 109-117.

Pradhani, F. A. (2016). Perbandingan Model Neural Networks Dengan Poisson Regression Dan Negative Binomial Regression Pada Kasus Demam Berdarah Dengue (DBD) Di Surabaya (Doctoral dissertation, Institut Teknologi Sepuluh Nopember).

Junadi, P. (1995). Pengantar Analisis Data. Rineka Cipta. Jakarta


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Editorial Office:

President University Actuarial Science: Jalan Ki Hajar Dewantara, Mekarmukti, Cikarang Utara, Bekasi 17530