Compressive Strength of Concrete Containing Merapi Cold Lava Sand

Theo Trichius Cilvin Peden Bungalolon, Ika Bali

Abstract


Reports from the literature state that Merapi sand is a good material as a filler in concrete to replace some of the fine aggregate because it has a high content of silica (SiO2) and the sharp edges of the silica form angular particles. The potential function of Merapi sand as a filler and its use as a waste material prompted this study to be carried out. The objective of this study is to determine the potential of Merapi Sand in terms of concrete compressive strength as an effective replacement for local sand in the Cikarang area. In this study, Merapi cold lava was crushed to the size of fine aggregate by passing a 2.26 mm sieve. The percentages of Merapi sand used as a partial substitute for local sand are 10%, 20%, and 30%. The results of this study show that Merapi sand concrete (MSC) 30% at age of 7 days and 28 days provides the highest increase in compressive strength of 17.4% and 15.8% respectively compared to normal concrete (NC). The addition of a percentage of Merapi sand as a partial replacement for local sand tends to increase the compressive strength of the concrete. Based on this study, Merapi sand has the potential to be used as a partial replacement for local sand in increasing the compressive strength of concrete and reducing cold lava waste.

Keywords


Merapi sand; cold lava; concrete; compressive strength; mechanical properties

Full Text:

PDF

References


H. Du and K. H. Tan, “Properties of High-Volume Glass Powder Concrete,” Cement and Concrete Composites, vol. 75, pp. 22–29, 2017.

A. P. Bayuseno, S. A. Widyanto, and J. Juwantono, “Sintesis Semen Geopolimer Berbahan Dasar Abu Vulkanik dari Erupsi Gunung Merapi,” Rotasi, vol. 12, no. 4, 2010. (In Indonesian)

J. Widjajakusuma, I. Bali, G. P. Ng, and K. A. Wibowo, “An Experimental Study on the Mechanical Properties of Low-Aluminum and Rich-Iron-Calcium Fly Ash-Based Geopolymer Concrete,” Advances in Technology Innovation, vol. 7, no. 4, pp. 295-302, 2022.

W. Kushartomo, I. Bali, and B. Sulaiman, “Mechanical Behavior of Reactive Powder Concrete with Glass Powder Substitute,” Procedia Engineering, vol. 125, pp. 617-622, 2015.

I. Bali, W. Kushartomo, and Jonathan, “Effect of In-Situ Curing on Compressive Strength of Reactive Powder Concrete,” MATEC Web of Conferences, vol. 67 (03013), pp. 1-6, 2016.

I. Bali and W. Kurnia, “The Curing Method Influence on Mechanical Behavior of Reactive Powder Concrete,” International Journal on Advanced Science, Engineering and Information Technology, vol. 8, no. 5, pp. 1976-1983, 2018. [Online]. Available: http://dx.doi.org/10.18517/ijaseit.8.5.4197.

N. Hanafiah, Pengaruh Penambahan Bubuk Kaca Sebagai Bahan Pengganti Sebagian Semen Dengan Variasi 2%, 4%, 6% dan 8% Terhadap Kuat Tekan dan Nilai Slump, Teknik Sipil, Universitas Muhammadiyah Yogyakarta, Yogyakarta, 2011. (In Indonesian)

I. Bali and A. Prakoso, “Beton Abu Sekam Padi Sebagai Alternatif Bahan Konstruksi,” Jurnal Sains dan Teknologi EMAS, vol. 12, no. 29, pp. 75-81, 2002. (In Indonesian)

I. Bali and F. Sitorus, “Merapi Volcanic Ash as An Eco-Material of Concrete Filler,” The 8th International Symposium on Lowland Technology, Bali, Indonesia, 2012.

I. Bali and O. Sitorus, “The Effect of Cold Lava Aggregate as A Filler Material of Concrete,” The 3rd International Conference of European Asian Civil Engineering Forum (EACEF), Yogyakarta, Indonesia.

B. P. Nugraha, E. T. Sudjatmiko, and I. Bali, “Compressive Strength of Concrete Containing Recycled Glass Powder,” PRESUNIVE Civil Engineering Journal, vol. 1, no. 1, pp. 8-12, April 2023.

R. H. Geovenerdy, I. Bali, and E. T. Sudjatmiko, “The Effect of Steam Curing on the Early Compressive Strength of Glass Powder Concrete,” PRESUNIVE Civil Engineering Journal, vol. 1, no. 2, pp. 48-53, Oktober 2023.

S. Choiriyah and D. Pertiwi, “Kuat Tekan Beton dengan Menggunakan Pasir Gunung Merapi Ditinjau dari Manajemen Kwalitas,” Seminar Nasional Sains dan Teknologi Terapan IV, 2016. (In Indonesian)

Lasino, B. Sugiharto, and D. Cahyadi, “Pemanfaatan Pasir dan Debu Merapi sebagai Bahan Konstruksi dalam Mendukung Pembangunan Infrastruktur dan Meningkatkan Nilai Guna Lahar Vulkanik,” Prosiding PPI Standardisasi, 2011. (In Indonesian)

D. Pertiwi, B. Wibowo, E. Kasiati, Triaswati, and A. G. Sabban, “Perbandingan Penggunaan Pasir Lumajang dengan Pasir Merapi terhadap Kuat Tekan Beton,” Jurnal APLIKASI, vol. 9, no. 2, 2011. (In Indonesian)

Sudaryo and Sutjipto, “Identifikasi dan Penentuan Logam pada Tanah Vulkanik di Daerah Cangkringan Kabupaten Sleman dengan Metode Analisis Aktivasi Neutron Cepat,” Seminar Nasional V SDM Teknologi Nuklir, 2009. (In Indonesian)

R. D. Susanti, A. Waruwu, D. Endriani, and I. Lesmana, “Potensi Penggunaan Pasir Lahar Dingin Gunung Sinabung Sebagai Campuran Beton,” Techno, vol. 23, no. 2, 2022. (In Indonesian)

ASTM C-39, Test Method for Compressive Strength of Cylindrical Concrete Specimens, USA: Annual Books of ASTM, 1993.

SNI 2847:2013, Persyaratan Beton Struktural untuk Bangunan Gedung, Jakarta: Badan Standardisasi Nasional, 2013. (In Indonesian)

SNI 03-2834-2000, Tata Cara Pembuatan Rencana Campuran Beton Normal, Jakarta: Badan Standardisasi Nasional, 2000. (In Indonesian)

SK. SNI S-04-1989-F, Spesifikasi Bahan Bangunan Bagian A (Bahan Bangunan Bukan Logam), Bandung: Lembaga Penyelidikan Masalah Bangunan, 1989. (In Indonesian)




DOI: http://dx.doi.org/10.33021/pcej.v2i1.5147

Refbacks

  • There are currently no refbacks.



President University Press

Lembaga Riset dan Pengabdian Masyarakat

President University

Jalan Ki Hajar Dewantara, Mekarmukti, Bekasi

Jawa Barat, Indonesia 17530