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Abstract— Sculptured-dies Cavity Roughing (SDCR) 

problem is a multi-dimensional problem. In XY-single cutter 

problem, the decision variables consist of layering and tooling 

selection problem by maximizing the efficiency of roughing, 

which consider finishing efficiency. The previous research 

approach to this problem shows that the dynamic programming 

approach. However, it is effective in searching solutions for the 

time-to-volume coefficient minimization (TVC) problem, and 

empirically shows 10% improvement compared to machining 

time minimization objective. The pre-processing procedures in 

dynamic programming approach are quite complex time-

consuming. Applying a genetic algorithm procedure for the 

multi-dimensional problem (GAMD) guarantees the merging 

process's feasibility, these pre-processing procedures can be 

eliminated, and significantly faster computational time. In the 

7-3-3 problem chosen in this research, the computational time is 

reduced from about 2 hours to 30 seconds. 

Keywords— Sculptured-dies Cavity Roughing, genetic 

algorithm, tool selection, Cutting layer determination, time-to-

volume coefficient. 

I. INTRODUCTION 

Sculptured-dies Cavity Roughing (SDCR) problem is a 
multidimensional problem because it takes more than one 
decision variables and can have more than one objective 
functions [1]. There are decision variables that are machining 
parameters such as feedrate, cutting force and others. Some 
other decision variables are not machining parameters such as 
selecting cutting tools and cutting height or cutting plane. 
Likewise, there are various objective functions in SDCR, such 
as minimizing cutting path length, minimizing roughing time, 
minimizing energy consumption and others as described in 
[1]. The study of [2] examined that one of the crucial problems 
found from the 168 papers on sculpture surface milling is the 
optimization of machining time. Some research in machining 
optimization considers more than one objective and a multi-
objective optimization problem [3-7]. 

In the SDCR and XY-single cutter problem, the cutting 
plane determination, and the selection of tool, one tool for 
each cutting plane is crucial to optimize the process [8-11]. 
The concept of merging the hunting layers was introduced by 
[8] as the procedure for cutting plane determination which 
should be optimized simultaneously with the decision of tool 
allocation. The combinations of alternative tools and hunting 
layers make the problem a complex combinatorial problem. 
To solve that problem, both [9, 10] have applied dynamic 
programming (DP) approach, with single objective [9] and 
multiple objectives [10]. Although the approach produces 

optimum solution and fast searching time, the requirement of 
the pre-processing procedure is complex and not easy. [9] has 
applied a genetic algorithm (GA) approach to solve the 
problem and show that the solution is acceptable [12]. 

Section II presents the result of GA application into SDCR 
problem with 2 objectives considered: minimizing machining 
time and residual volume. Aggregate measurement, Time-to-
Volume Coefficient (TVC), is used to trade-off between both 
objectives, as applied in [10]. The application of GA is 
expected to eliminate the complex pre-processing procedure 
when DP applied as in [10]. Table I explains the difference 
between [10,11] and this research. 

TABLE I.  SDCR OPTIMIZATION 

Researcher Method Objective (Min) 

[10] 
Dynammic Programming 
and Genetic Algorithm 

Roughing time 

[11] Dynammic Programming Time-to-Volume 

Coefficient This paper Genetic Algorithm 

 

Fig 1, as presented in [10], represents XY-Single cutter 
problem, with four candidates of cutting layers or hunting 
layers. A maximum of 4 cutting layers can be cut. If there 
is/are merging some hunting layers, this cavity will be cut by 
less than four cutting layers. Only one cutting tool is allocated 
for each cutting layer. The searching of both cutting layers and 
cutting tools should be done simultaneously to find the 
optimum TVC. 

The relationship between TVC, machining time and 
residual volume is shown by equation 1 as presented in [10].  

𝑇𝑉𝐶𝑙
𝑝,𝑚

 is a function of machining time  𝑇𝑙
𝑝

, residual 

volume 𝑅𝑙
𝑚 , and total cavity volume to be machined 𝑉𝑙

𝑚 . 
Where l is representing hunting layer (l=1..L/A,B,C…), p is 
representing alternative tool (p=1..P), and m is representing 
number of merged layer (m=1..M). 
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Fig. 1. Layer-by-layer sculptured-die cavity machining [10] 
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    (1) 

Section III is the literature review of hybrid evolutionary 
approaches in CNC machining and section IV is the 
discussion of application of hybrid evolutionary approaches in 
SDCR problem for the next research. Section V is the 
conclusion of GA application in SDCR problem and the 
recommendation for hybrid evolutionary approaches in SDCR 
problem.  

   

II. GENETIC ALGORITHM APPLICATION FOR SDCR PROBLEM 

TO MINIMIMIZE TIME-TO-VOLUME COEFFICIENT 

A. Procedure 

Fig. 2 is GA procedure for SDCR which is started by 
setting the parameter value for L,M,P, population size (B), 
Number of iteration (I), Cross-over probability (ProbC), 
Mutation probability (ProbM), and number of elite 
chromosomes. The chromosome is the binary coding as 
presented in [11]. The number of consecutives zeros in a 
chromosome is limited by the maximum merging values. This 
is guaranteed by the feasibility checking in the algorithm. 

 

Count the length of binary code (K)

K = Sum(K(i))= F(L,M,P)

Population initiation (Binary chromosome size BxK)

Chromosome(b) 

Feasible?

b=0

b<B?

Decoding and 

calculate Fitness 

value

i<I?

Cross-over and mutation procedure 

(B-E chromosome)

Stop

Start

Y

N

Y

Set parameter 

L,M,P(l), B, I, ProbC, ProbM, E

b=b+1

N

Change digit at 

feasible boundary to 1 

Data t,r,v per 

hunting layer

Elitism (E 

chromosomes) 

Choose parents by roulette wheel 

procedure 

i=0

i=i+1

New population = E elite 

+ (B-E) new chromosome

N
Y

Update fitnes value and 

solution

Output : Best 

fitness value 

and solution

 

Fig. 2. GA procedure for SDCR 

 

The following is an example of an explanation of the steps 
in the genetic algorithm for the problem of determining the 
cutting layer and tool selection in DCM. The case discussed is 
the L-P-M value of 7-3-3 with 20 data sets and two feasible 
tool conditions (3332211 and 3333333). 

Step 1: Generate a matrix of binary numbers with size BxK 
randomly. ] 

For example, B=100, K=12, where B is number of 
chromosomes and K represents the number of feasible 
alternative tools for each cutting layer. The case of L-P-M = 
7-3-3 and the number of appropriate tools per hunting layer = 
3,3,3,2,2,1,1 so that k=2,2,2,2,1,1,1, then K=Sum(k)=12. 

Fig. 3 shows an example of 6 out of 100 chromosomes that are 
generated. This matrix is then checked for feasibility using the 
procedure in step 2. 

 

Fig. 3. An example of matrix of 6 x 12 

Step 2: Check the maximum merging procedure 
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Columns 1 to 10 are declared eligible if there are 0 in front of 
a maximum of 6 consecutive columns. Columns 11 to 12 are 
declared eligible if there are a maximum of 5 successive 0 in 
front of them. In the example. The matrix generated in step 1 
(see Fig, 3) has an impropriety in the 4th   row and 8th column, 
so the binary number matrix is revised as seen in Fig.4. 

 

Fig. 4. Revised matrix  of 6 x 12 

Step 3: Convert the matrix of size BxK to matrix of size BxL 

It is necessary to calculate the fitness value for each 
chromosome to determine the parent chromosome. For 
calculating the fitness value, each binary number group needs 
to be returned to its actual number so that the matrix size 
becomes BxL. In this example, a 6x12 binary number matrix 
is translated into a 6x7 real number matrix, according to the 
number of hunting layers and the number of chromosomes. 
The converted matrix can be seen in Fig. 5. 

 

 

 

 

 

 

Fig. 5. Converted matrix of 6 x 7 

Step 4: Decoding to tool code numbers and merging (kpm) 

The result of step 4 can be seen in Fig.6. 

 

Fig. 6. Decoding to tool code numbers and merging 
 

Step 5: Calculation of Fitness value 

The fitness value is computed using (2), because the objective 

function is to minimize (3), where TVC is Time-to-Volume 

Coefficient, t is roughing machining time, r is residual 

volume (cut-off), and v is volume of machining area 

(roughing+cut-off). The result of fitness value can be seen in 

Table II. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑉𝑎𝑙𝑢𝑒 =  
1

𝑇𝑉𝐶
 (2) 

 

𝑇𝑉𝐶 =  
𝑡. 𝑟

(𝑣 − 𝑟)
 (3) 

 

TABLE II.  FITNESS VALUE 

Chromosome 
Fitness 

Value 

001001101111 1.2639 

110010011111 0.9929 

001101100110 1.2541 

100101111110 1.1212 

010101001110 1.0670 

101011100100 1.0244 

 

Step 6: Selected two chromosomes with the best fitness value 

to be stored as an elite group.  

 
Subsequently, 98 chromosomes were generated with a 
random binary number of size L. Then, cross-over operations 
and mutations were performed on the selected chromosomes. 
The first and third chromosomes have the largest fitness 
values in the following example, so they become elite 
chromosomes (see Table II). 

B. Numerical Example 

In the application of the genetic algorithm, 7-3-3 cases 
were selected with 20 data sets with the following explanation: 

1. The twenty data sets used to represent the shape of the 
mould cavity having the same height, with the total 
number of feasible cutting tools being the same for each 
data set. The difference between each data set is the 
inclination of the mould cavity wall, which is slightly 
different from one data set to another. The data from A to 
T represent mould cavities with different cavity wall 
slopes and change gradually from cavity A to cavity T. 

2. There are seven candidate cutting layers for each mould 
cavity, also known as hunting layers. The number of 
appropriate chisels is different for each hunting layer. 
Each alternative decision combination (merging and tool 
allocation) will be represented by chromosomes, a 
collection of binary numbers. Although the number of 
feasible tools is different for each hunting layer, they can 
be exchanged in the cross-over process because binary 
numbers represent them. 

The cross-over and mutation procedure uses a single-point 
crossover and a low mutation probability. By following the 
procedure in [11] for the development of chromosome with 
binary coding, for the case of 7 hunting layers (L=7), 3 
maximum merging layers (M=3), and 3 alternative cutting 
tools (P=3), there are 12 digits of binary coding (K=12). 
Parameter settings of B, I, ProbC, ProbM, E are 100, 50, 0.8, 
0.05 and 2 consecutively. Single cross-over is applied. 

The following explains the steps in the application of 
genetic algorithms. The first step begins with the 
determination of the chromosomes that will represent the 
expected solution, namely the cutting layer and the selected 
cutting tool. 

The binary numbers are used to represent the two 
decisions. The cutting layer decision is the result of the 
merging decision of several hunting layers, which is 
represented by a 0. For example, two zeros before 1 means 
that two other hunting layers will merge with the 3rd hunting 
layer.  

For example, chromosome 001100001011 is a matrix of 
binary numbers with 12 digits representing seven hunting 
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layers with the number of appropriate tools in a row from 
hunting layers 1 to 7 is 3,3,3,2,2,1,1. The number of suitable 
tools for each hunting layer is represented by the number of 
binary digits. The number of 3 suitable tools and will be 
represented by 2 digits (11,10,01, or 00) which states the 
selected tool number, except 00 which means that a merging 
process occurs with hunting, next layer. The interpretation of 
chromosome 001100001011 into a process code is shown in 
Table III. T1AB0 means hunting layers A and B will be using 
cutting tool number 3 (T1). The last zero indicates that the 
maximum merging is 2. T1AB0 is represented by the binary 
number 0011. 

TABLE III.  INTERPRETATION OF BINARY CODE ON CHROMOSOMES 

Hunti

ng 

layer  

HL1 HL2 HL3 HL4 HL5 HL6 HL7 

Binary 0 0 1 1 0 0 0 0 1 0 1 1 

Merging 
2 hunting 

layer 
3 hunting layer   

Cutting 

tool 
  

Tool 

3 

(T1) 

    
Tool 2 

(T2) 

Tool

1 

(T3) 

Tool 

1 

(T3) 

Real No 0 3 0 0 2 1 1 

Process 

Code 
T1AB0 T2CDE 

T3F
00 

T3G
00 

C. Cases : 3 different classes of merging 

The data (cases) chosen for GA application for SDCR is 
the same data presented in [11]. Twenty data sets in Table IV 
represent different cavities with slightly different inclinations 
in each sculpture wall. Based on that experiment, it is 
concluded that three different merging classes can be 
represented by 3 data sets to be chosen in the GA application: 
data set 1, 2 and 3. The first 3 rows in Table IV are the 
optimum solution for those sets of data (cavity 1-3). 

Optimum TVC for data set-1 (cavity-1) is achieved when 
the roughing process is T1AB-T2CD-T2E-T3F-T3G. That 
means hunting layers A and B are merged and cut together 
using cutting tool T1. Hunting layers C and D are merged and 
cut together using cutting tool T2.  

Optimum TVC for data set-2 (cavity-2) is achieved when 
the roughing process is T1ABC-T2DE-T3FG. Optimum TVC 
for data set-3 (cavity-3) is achieved when the roughing process 
is T1A-T1B-T1C-T2D-T2E-T3F-T3G, or no merging for any 
of those hunting layers. 

Since those three sets of data (3 cavities) represent overall 
merging classification, then those data are used to test the GA 
application for SDCR.  

TABLE IV.  OPTIMUM RESULT FOR EACH DATA SET 

Data 

Set# 1/TVC 

Optimum Merging and Tool Allocation  

1 2 3  4 5  6 7 

1 1.3819 T1AB T2CD T2E T3F T3G 

2 1.4396 T1ABC T2DE T3FG 

3 1.0575 T1A T1B T1C T2D T2E T3F T3G 

4 1.1161 T1A T1B T1C T2D T2E T3F T3G 

5 1.0081 T1A T1B T1C T2D T2E T3F T3G 

6 0.9183 T1A T1B T1C T2D T2E T3F T3G 

7 0.8432 T1A T1B T1C T2D T2E T3F T3G 

8 0.7788 T1A T1B T1C T2D T2E T3F T3G 

9 0.7241 T1A T1B T1C T2D T2E T3F T3G 

10 0.6780 T1A T1B T1C T2D T2E T3F T3G 

11 0.6386 T1A T1B T1C T2D T2E T3F T3G 

12 0.6057 T1A T1B T1C T2D T2E T3F T3G 

13 0.5780 T1A T1B T1C T2D T2E T3F T3G 

14 0.5537 T1A T1B T1C T2D T2E T3F T3G 

15 0.5348 T1A T1B T1C T2D T2E T3F T3G 

16 0.5297 T1ABC T2DE T3FG 

17 0.5230 T1ABC T2DE T3FG 

18 0.5247 T1ABC T2DE T3FG 

19 0.5345 T1ABC T2DE T3FG 

20 0.5571 T1ABC T2DE T3FG 

 

Each procedure is run 14 times for each set of data. 
Table V to Table VII summarize the distribution of the best 
fitness values for each run. The GA result's frequency 
percentage representing the optimum solution is quite good. 
Consecutively the percentages are 64.3, 71.4, and 64.3. The 
remaining values are close enough to the optimum values. 

TABLE V.  DISTRIBUTION OF FITNESS VALUE ON 14 RUNS  
(DATA SET-1) 

 Fitness Value Frequency % 

1.3720 1  

1.3770 2  

1.3778 2  

1.3819 (optimum) 9 64.3 

TABLE VI.  DISTRIBUTION OF FITNESS VALUE ON 14 RUNS  
(DATA SET-2) 

 Fitness Value Frequency % 

1.2636 1  

1.4251 2  

1.4306 1  

1.4396 (optimum) 10 71.4 

TABLE VII.  DISTRIBUTION OF FITNESS VALUE ON 14 RUNS  
(DATA SET-3) 

 Fitness Value Frequency % 

1.0552 1  

1.0545 3  

1.0575 (optimum) 10 64.3 

 

III. DISCUSSION 

It is concluded that the proposed GA procedures are 
showing a good result. 15 out of 20 experiments conducted 
by using GA approach produce optimum results. The TVC 
values are good enough means that very high chance to get 
the optimum, and in the case not optimum, it is close to 
optimum. The computation time  and searching time  of GA 
procedures is fast,  less than 30 seconds. Compare the multi-
objective dynamic programming (MODP) method. This GA 
procedure does not require the pre-processing stage, MODP 
requires complex pre-processing procedure [9].  

Fig.7 are some graphics showing the GA searching for 
better fitness values. The convergence of the searching 
process is quite good. However, the improvement of the 
values during the searching time shows that at some point at 
the beginning of searching time, the values are stuck in local 
optimum values. It can be improved using Hybrid 
Evolutionary Approach [13, 14].  
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Fig. 7. GA Searching process to better fitness values for Data Set 1 (a) 

Run #1; (b) Run #4; (c) Run #8. 

Since each data set represents different cavities with 
slightly different inclination in each sculpture wall, the 
simulation results for the machining time and residual volume 
obtained from the simulator will also be different. So the best 
solution is different for each data set.  

The problem of determining cutting tool layers and 
selecting tools for each layer simultaneously is a complex 
combinatorial problem. The application of dynamic 
programming algorithms with the Dijkstra algorithm with 
three dimensions has shown promising results: the same 
solution as the optimal solution. Through Matlab 
programming, the computation time required is short, which 
is only 19 seconds on average for each data set. 

The same data set, namely, the data set with scenario 7-3-
3, which produces 4095 combinations of solutions for layering 
decisions (merging) and cutting tool allocation decisions, 
takes 4 hours of computation time for each data set 
enumeration process for each combination. Thus, there is a 
significant reduction in computation time. The search for 
solutions using dynamic programming only takes an average 
of 19 seconds. However, a reasonably complex pre-processing 
process is required to become impractical. 

It takes a more practical approach without a complex pre-
processing process, but with a short computation time. The 
metaheuristic approach, in this case, the genetic algorithm, is 
a promising approach. The genetic algorithm was chosen to 
simplify the solution search procedure. This section will 
discuss the steps of the algorithm and the results of applying 
the algorithm both from the resulting solution and from GA's 
ability to produce optimal or near-optimal solutions. 

IV. CONCLUSION 

Using a Genetic Algorithm for the multi-dimensional 
problem (multi decision variables) in SDCR problem has 
proven to be effective in searching the optimum solution and 
can eliminate the pre-processing procedures such as in the DP 
approach. The algorithm has produced the optimum result or 
very close to the optimum result. The optimum result as 
presented in [9], empirically showed 10% of improvement of 
machining efficiency when compared to result from the 
simulator and as well better machining efficiency when 
compared to smallest-tool-possible (STP) and smallest 
residual possible (SRP). 

Compared to enumeration procedures, the GA procedure 
reduces computational time significantly from about 120 
minutes per data set to less than 30 seconds. 

The limitation of this research is the fitness values are 
stuck in local optimum. Thus, Hybrid Evolutionary Approach 
can be considered. Moreover, combinatorial optimization 
algorithm using intelligent generation algorithm can be 
considered for better accuracy result and shorter computation 
time.  
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