Forecasting Weekly Stock Price of PT. Bank Negara Indonesia Tbk Using ARIMA Method
Abstract
Keywords
Full Text:
PDFReferences
D. Muhammad, I. Ahmed, K. Naveed, and M. Bendechache, “An explainable deep learning approach for stock market trend prediction,” Heliyon, vol. 10, no. 21, Article e40095, 2024, doi: 10.1016/j.heliyon.2024.e40095.
A. G. a. A. Kannan, "Stock price prediction using ARIMA model," International Research Journal of Engineering and Technology (IRJET), vol. 8, no. 8, pp. 226-234, 2021.
U. M. Sirisha, M. C. Belavagi, and G. Attigeri, “Profit prediction using ARIMA, SARIMA, and LSTM models in time series forecasting: A comparison,“IEEE Access, vol. 10, pp. 124715-124727, 2022.
E. Chodakowska, J. Nazarko, L. Nazarko, H. S. Rabayah, R. M. Abendeh, and R. Alawneh, “ARIMA models in solar radiation forecasting in different geographic locations,”Energies, vol. 16, no. 13, p. 5029, 2023, doi: 10.3390/en16135029.
PT. Bank Negara Indonesia (Persero) Tbk, “Sejarah BNI,” BNI, [Online]. Available: https://www.bni.co.id/id-id/perseroan/tentang-bni/sejarah. [Accessed: Apr. 28, 2025].
P. Pardede, M. Sipahutar, and P. Naibaho, “Forecasting stock prices of PT. Bank Negara Indonesia (Persero) Tbk., by method (BOX-JENKINS),” Primanomics: Jurnal Ekonomi & Bisnis, vol. 19, no. 1, pp. 191-205, 2021.
A. I. S. Wardhani and M. R. Yudhanegara, “Forecasting weekly stock price of PT. Aneka Tambang Tbk (ANTM) using ARIMA Box-Jenkins method,” Journal of Actuarial, Finance and Risk Management (JAFRM), vol. 3, no. 2, pp. 20-31, 2025.
J. D. Cryer and K. S. Chan, “Model for Stationary Time Series,” in Time Series Analysis: With Applications in R, 2nd ed., NY, USA, Springer, 2008, pp. 55–77.
G. Mani and R. Volety, "A comparative analysis of LSTM and ARIMA for enhanced real-time air pollutant levels forecasting using sensor fusion with ground station data," Cogent Engineering, vol. 8, no. 1, pp. 1–27, 2021, doi: 10.1080/23311916.2021.1936886.
E. González-Estrada, J. A. Villaseñor, and R. Acosta-Pech, Shapiro-Wilk test for multivariate skew- normality, Computational Statistics, vol. 37, Jan. 2022, doi: https://doi.org/10.1007/s00180-021-01188-y.
J. Dare, A. O. Patrick, and D. O. Oyewola, “Comparison of Stationarity on Ljung Box Test Statistics for Forecasting,” Earthline Journal of Mathematical Sciences, vol. 8, no. 2, pp. 325–336, Feb. 2022, doi: https://doi.org/10.34198/ejms.8222.325336.
C. Ergenc and R. Aktas, "Sector-specific financial forecasting with machine learning algorithm and SHAP interaction values," *Financial Internet Quarterly*, vol. 21, pp. 42-66, 2025, doi: 10.2478/fiqf-2025-0004.
C. D. Lewis, Industrial and Business Forecasting Methods: A Radical Guide to Exponential Smoothing and Curve Fitting, London, Butterworth Scientific, 1982.
J. Saputra, “Forecasting Stock Price of PT. GoTo Gojek Tokopedia Tbk (GOTO.JK) using ARIMA Box- Jenkins Method”, Indones. j. appl. math. stat, vol. 1, no. 2, pp. 79–88, Dec. 2024.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Editorial Office:
President University Actuarial Science:Â Jalan Ki Hajar Dewantara, Mekarmukti, Cikarang Utara, Bekasi 17530