Forecasting Weekly Stock Price of Jakarta Stock Exchange Composite Index (IHSG) Using ARIMA Box-Jenkins Method

Geovani F Simanjuntak

Abstract


Stock price movements in the capital market reflect investor sentiment and economic trends, requiring accurate forecasting methods to support decision-making. One method that can be used for forecasting is the Autoregressive Integrated Moving Average (ARIMA). The application of the ARIMA method to the weekly stock price data of the Jakarta Stock Exchange Composite Index (IHSG) from November 2023 to April 2025 produces the equation Y, 0.874-1-0.5359+0.66193 + 0.041661-1+0.9721e2+ 0.1892-3+ et which is obtained from ARIMA(2,1,3) as the best model based on the lowest error values (MAE, MSE, RMSE, and MAPE). This model passed residual diagnostics and demonstrates strong potential in forecasting IHSG stock prices.

Keywords


ARIMA; Jakarta Stock Exchange Composite Index; IHSG: Forecasting

Full Text:

PDF

References


H. Sasono, I. Moridu, P. Irianto, C. Hahmudi, S. Yuliati, and L. D. Resihono, “Composite Stock Price Index (IHSG) Analysis,” Educational Administration: Theory and Practice, vol. 30, no. 5, pp. 11596–11602, 2024.

A. Kusuma Novandi and M. F. Falah, “The Influence of Inflation, Interest Rates, and Exchange Rates on the Composite Stock Price Index (IHSG) in Indonesia,” Islamic Monetary and International Trade Research in Indonesia, Aug. 2023.

D. Gunawan and W. Astika, “The Autoregressive Integrated Moving Average (ARIMA) Model for Predicting Jakarta Composite Index,” Jurnal Informatika Ekonomi Bisnis, vol. 4, no. 1, pp. 1–6, 2022.

H. Kurniawan and M. M. Handika, “Forecasting the Composite Stock Price Index (IHSG) using ARIMA Method,” Jurnal Ilmiah MEA (Manajemen, Ekonomi, & Akuntansi), vol. 6, no. 2, pp. 670–676, 2022.

R. H. F. Nuryawan and A. R. Adiwisastra, “Volatility Modeling of Indonesia Composite Index (IHSG) using ARCH and GARCH Models,” Jurnal Ilmiah Ekonomi Global Masa Kini, vol. 13, no. 1, pp. 1–7, 2022.

H. Santosa and D. Y. I. Iryani, “Forecasting Time Series with ARIMA: A Study on Indonesian Financial Data,” Jurnal Matematika Integratif, vol. 19, no. 1, pp. 49–60, 2022.

G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series Analysis: Forecasting and Control, 5th ed. Hoboken, NJ: John Wiley & Sons, 2015.

D. Kusumah and R. R. Hakim, “Implementation of ARIMA Model in Forecasting the Indonesia Stock Exchange Index,” Journal of Physics: Conference Series, vol. 1898, no. 1, p. 012050, 2021.

N. R. Utami and I. R. Purboyo, “Forecasting Jakarta Composite Index with ARIMA Model: Case Study of IHSG Monthly Data,” Jurnal Matematika, Statistika dan Komputasi, vol. 17, no. 2, pp. 113–122, 2021.

S. L. S. Haerani and E. S. Nugraha, “Model ARIMA dalam Memprediksi Indeks Harga Saham Gabungan Jakarta,” Jurnal Aktuaria, Keuangan, dan Manajemen Risiko, vol. 1, no. 1, pp. 1–10, 2023.

adillah and S. A. Fauzi, “Impact of Global Uncertainty on the Indonesian Stock Market: dence from the Post-pandemic Period,” Jurnal Ekonomi dan Pembangunan Indonesia, 24, no. 2, pp. 165–174, 2023.

A. S. E. Hidayat and G. Primajati, “Estimating and forecasting Jakarta Composite Index in pandemic era using ARIMA-GARCH model,” Jurnal Varian, vol. 7, no. 2, pp. 123– 130, 2023.

S. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice, 3rd ed. Melbourne, Australia: OTexts, 2021.

U. A. Yakubu and M. P. A. Saputra, "Time Series Model Analysis Using Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) for E- wallet Transactions during a Pandemic," Int. J. Glob. Oper. Res., vol. 3, no. 3, pp. 80– 85, Aug. 2022.

S. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice, 3rd ed. Melbourne, Australia: OTexts, 2021.

C. D. Lewis, Industrial and business forecasting methods: A Radical guide to exponential smoothing and curve fitting. London: Butterworth Scientific, 1982.

I. Svetunkov, Forecasting and Analytics with the Augmented Dynamic Adaptive Model (ADAM), New York: Chapman and Hall/CRC, 2023.

A. I. S. Wardhani and M. R. Yudhanegara, “Forecasting Weekly Stock Price of PT. Aneka Tambang Tbk (ANTM) Using ARIMA Box-Jenkins Method,” Journal of Actuarial, Finance, and Risk Management, vol. 3, no. 2, pp. 20–31, 2025.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Editorial Office:

President University Actuarial Science: Jalan Ki Hajar Dewantara, Mekarmukti, Cikarang Utara, Bekasi 17530