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Abstract— As the most populated island in Java, the island needs to have very efficient out-of-town land transportation. The train 

is really important transportation in Java. To avoid an unexpected surge in delivering the goods, proper forecasting is required. 

ARIMA (Autoregressive Integrated Moving Average) model is a method that can be used to predict the number of goods 

transported in the future. In this analysis, ARIMA (1,1,0) is the best model to use because it has the smallest MAPE among the 

other model which is 66.6%.  The objective of this analysis is to predict the number of goods so the train company can anticipate 

surges in delivering the goods and may be useful in handling the number of goods in the future by making efficient policies. 
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I. INTRODUCTION 

Freight trains or baggage trains are trains used to transport goods. Goods that can be transported by freight trains are very 

diverse, such as fertilizers, mining products, containers, oil or liquid commodities, and even livestock can be transported by freight 

trains [1]. History records that freight transport plays an important role in railways in Indonesia. The growth in the number of 

motorized vehicles and regional developments are very influential in decreasing the speed of delivery of goods and the high 

number of accidents and traffic, making the delivery of goods less efficient. Because of this, trains are much more efficient in 

distributing goods for both medium and long distances for out-of-town deliveries compared to other land vehicles [2]. Freight 

train is also one of the transportation that plays an important role in the mobility of the population. According to Badan Pusat 

Statistika Indonesia [4], the demand for freight train services tend to increase every year, this shows a very large public interest 

in the use of freight trains. However, there are unstable increases and decreases at certain times, so it is necessary to adjust the 

number of goods each time. This of course requires that it can reduce the risk.  

Many previous studies used ARIMA to estimate freight demand. In [6], Su and Su forecast railway, BRT, and bus system 

demand in Instanbul. According to analysis, ARIMA showed moderate prediction for their data set, and for railway itself, it had 

2.55% yearly prediction error. Zhao et al. [7] predicted railway freight volume of Ningxia in 2016. Based on test result, the 

construction of ARIMA (2,2,2) model gave a pretty good fitting precision, with forecasting volume of 5681.457 million tons in 

2016, an increase of 0.89% over 2015. Furthermore, they stated the accuracy of ARIMA model will reduce if the predicting period 

was extended. Thus for future research, they suggested to improve the parameters so that the accuracy for long term forecasting 

can be improved as well.Since previous researches above succeed in freight prediction, writers motivated to study freight trains 

demand as well using ARIMA with the data used in the analysis were obtained from Badan Pusat Statistik Indonesia. The purpose 

of forecasting the number of goods by train in Java is to estimate the number of goods or the surge in goods in every situation. So 

that this forecasting can help PT Kereta Api Indonesia to prepare and take effective and efficient policies thus later it can anticipate 

unexpected things in the future. 

II. LITERATURE REVIEW 

A. Introduction to Time Series Analysis 

  Time Series data is a collection of data observations on an object {𝑋𝑡}  that occurs sequentially in time t, where 𝑡 = 1,2,3, …In 

analyzing the Time Series, the Autoregressive Integrated Moving Average (ARIMA) method can be used to observe accurate 

short-term data [5]. Based on the name, this method is a combination of regressive and moving average models, wherein making 

predictions, this method uses independent variable data based on past and present values. 
 

B. Stochastic Process 

 A stochastic process is a sequence of random variables {𝑌𝑡 = 0, ±1, ±2, ±3, … } which presents the observed time series 

model. The models are mean, variance, autocovariance, and autocorrelation. 

1) The Mean is defined by 

𝑡 = 𝐸(𝑌𝑡), for 𝑡 = 0, ±1, ±2, …                           (1) 

  µt is the expected value at process time t. In general, t can be different at any time t. 

2) Function Variance is 

−[𝑉𝑎𝑟 (𝑌𝑡) = 𝑡𝜎𝑒
2…               (2) 
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3) The Autocovariance defined by  

𝛾
𝑡,𝑠

= 𝐶𝑜𝑣 (𝑌𝑡 , 𝑌𝑠)  for 𝑡, 𝑠 = 0, ±1, ±2, …              (3) 

     where, 

𝐶𝑜𝑣 (𝑌𝑡 , 𝑌𝑠) = 𝐸[(𝑌𝑡 − 𝜇𝑡)(𝑌𝑠 − 𝜇𝑠)] = 𝐸(𝑌𝑡 , 𝑌𝑠) − 𝜇𝑡𝜇𝑠              (4) 

4) The Autocorrelation is 

𝜌
𝑡,𝑠

= 𝐶𝑜𝑟𝑟 (𝑌𝑡 , 𝑌𝑠) for 𝑡, 𝑠 = 0, ±1, ±2, …              (5) 

where,  

   𝐶𝑜𝑟𝑟(𝑌𝑡 , 𝑌𝑠) =  
𝐶𝑜𝑣(𝑌𝑡,𝑌𝑠)

√𝑉𝑎𝑟 (𝑌𝑡)𝑉𝑎𝑟(𝑌𝑠)
=  

𝛾𝑡,𝑠

√𝛾𝑡,𝑡,𝛾𝑠,𝑠
                (6) 

  

C. Stationary 

In the analysis of time series, stationary is an important concept in observing data. Stationary is some simple assumptions to 

make statistical conclusions about the stochastic process based on the obtained data. Time series can be said to be stationary if 

the mean and variance are constant. 

1) The Strictly Stationary 

Stochastic process {𝑌𝑡} can be said to be strong if the combined distribution of 𝑌𝑡1
, 𝑌𝑡2

, … , 𝑌𝑡𝑛
 is the same as the combined 

distribution of  𝑌𝑡1−𝑘, 𝑌𝑡2−𝑘 , … , 𝑌𝑡𝑛−𝑘 for all time points 𝑡1, 𝑡2, … , 𝑡𝑛 and for all times k. 

For n =1, the univariate distribution of 𝑌𝑡 is equal to 𝑌𝑡−𝑘  for all t and k. In other words, Y is an identical distribution. Then, 

E(Yt) = E(Yt−k)  and Var(Yt) = Var(Yt−k) for all t and k. resulting in mean and variance from time to time.  

For n= 2, 𝑌𝑡 and 𝑌𝑠 must equal 𝑌𝑡−𝑘and 𝑌𝑠−𝑘. So, 

     𝐶𝑜𝑣(𝑌𝑡 , 𝑌𝑠) = 𝐶𝑜𝑣(𝑌𝑡−𝑘, 𝑌𝑠−𝑘) for all t, s, and k                          (7) 

k = s and k = t, get 

γt,s = Cov(Yt−s, Y0) 

        = Cov (Y0, Ys−t) 

          = Cov(Y0, Y|t−s|) 

                                                                                                 =  γ0,|t−s|                                                                  (8) 

From The notation can be concluded that 𝛾
𝑘

= 𝐶𝑜𝑣(𝑌𝑡 , 𝑌𝑡−𝑘) and 𝜌
𝑘

= 𝐶𝑜𝑟𝑟(𝑌𝑡 , 𝑌𝑡−𝑘) 

`     𝜌
𝑘

=
𝛾𝑘

𝛾0
                             (9) 

2) Weakly Stationary 

Stochastic process {𝑌𝑡} can be said to be weak or second-order stationary if the mean function is constant over time and if 

𝛾
𝑡,𝑡−𝑘

= 𝛾0,𝑘 for all time t and lag k. 
 

D. Transformation of Time Series Analysis 

To use the ARIMA model, stationary time series data is required because the model can only be used on a stationary time 

series, therefore data transformation is required. The transformation that will be used is to perform differencing, which is to 

calculate the change or difference in the value of the observation. There are 2 methods for doing Forecasting, namely 

1) Non-Stationary Time Serie\\ 

et = Xt − Xt−1                             (10) 

2) Stationary Time Series 

       Wt = Xt − Xt−1                (11) 

The general form of the backward Shift Operator, 

𝐵𝑋𝑡 = 𝑋𝑡−1                             (12) 

Like polynomials, other real B and W are manipulated in the same way. 

 

E. Autocovariance Function, Autocorrelation Function (ACF), and Partial Autocorrelation Function (PACF) 

1) Autocovariance 
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Function Autocovariance function is the covariance of the variable itself at a certain time. Autocovariance is defined as, 

𝛾𝑘 = 𝐶𝑜𝑣 (𝑋𝑡 , 𝑋𝑠) for 𝑘 = 0, ±1, ±2, ±3, …                                       (13) 

Where, 

𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑠) = 𝐸[(𝑋𝑡 − 𝜇𝑡)(𝑋𝑡 − 𝜇𝑠)] = 𝐸[𝑋𝑡 , 𝑋𝑡,𝑠] −  𝜇𝑡𝜇𝑡                            (14) 

2) Autocorrelation Function (ACF) 

Autocorrelation is a correlation that is arranged based on the time sequence between the data before and the data after it. 

Autocorrelation is denoted by, 

𝜌𝑡,𝑠 = 𝐶𝑜𝑟𝑟(𝑌𝑡 , 𝑌𝑠) for 𝑡, 𝑠 = 0, ±1, ±2, …                                                   (15) 

Where,  

𝐶𝑜𝑟𝑟(𝑌𝑡 , 𝑌𝑠) =  
𝐶𝑜𝑣(𝑌𝑡,𝑌𝑠)

√𝑉𝑎𝑟 (𝑌𝑡)𝑉𝑎𝑟(𝑌𝑠)
=  

𝛾𝑘

𝛾0
       (16) 

Following are some important properties of autocovariance and autocorrelation functions: 

 

𝛾
𝑡,𝑡

= 𝑉𝑎𝑟(𝑌𝑡)   ,𝜌
𝑡,𝑡

= 1        (17) 

𝛾
𝑡,𝑠

=  𝛾𝑠,𝑡   ,𝜌
𝑡,𝑠

=  𝜌𝑠,𝑡      (18) 

|𝛾𝑡,𝑠| ≤  √𝛾
𝑡.𝑡

𝛾
𝑠,𝑠

  ,|𝜌𝑡,𝑠| ≤ 1       (19) 

 

3) Partial Autocorrelation Function (PACF) 

The partial Autocorrelation Function is a function used to measure the correlation between data at k that have elapsed and 

current observations [5]. Partial autocorrelation is formulated as follows 

𝜙
𝑘𝑘

= 𝐶𝑜𝑟𝑟(𝑋𝑡 , 𝑋𝑡−𝑘|𝑌𝑡−1, 𝑌𝑡−2, … , 𝑌𝑡−𝑘+1)                   (20) 

III. ANALYSIS AND DISCUSSION 

A. Data Preparation 

The data used in this analysis is the number of goods via rail transportation in Java from January 2016 to December 2018. 

TABLE 1 

MONTHLY GOODS TRANSPORTED 2016-2018 

 

Year Month 
Number of 

goods 
 Year Month 

Number of 

goods 

 

 

 

 

 

2016 January 927  2017 July 1081 

2016 February 734  2017 August 1176 

2016 March 785  2017 September 1083 

2016 April 967  2017 October 1197 

2016 May 873  2017 November 1143 

2016 June 945  2017 December 1110 

2016 July 766  2018 January 1227 

2016 August 1019  2018 February 1021 

2016 September 936  2018 March 1205 

2016 October 975  2018 April 1193 

2016 November 973  2018 May 1338 

2016 December 991  2018 June 846 

2017 January 974  2018 July 1357 

2017 February 861  2018 August 1323 

2017 March 966  2018 September 1330 

2017 April 967  2018 October 1391 

2017 May 1101  2018 November 1284 

2017 June 781  2018 December 1300 

 

B. Stationary Check 

The next step is to check whether the data is stationary or not. To check whether the data is stationary, we can use the Augmented 

Dickey-Fuller (ADF) Test on R. Stationary data can be seen from its p-value. If the p-value of the data is less than 0.05, then the 

data can be said to be stationary. 
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Based on the data obtained using the ADF test, the p-value of the data is 0.2476, which means the data is not stationary 

because it is greater than 0.05. Therefore, it is necessary to do differencing until the data is stationary. After doing the differencing, 

we can see that the p-value of the data becomes 0.01, which means that the data is stationary because the p-value is already below 

0.05. The following is a time series plot, autocorrelation function, and partial autocorrelation function for the number of goods 

transported in java for 2016-2018. 

 

 
Figure 1 Time Series Plot 

  
Figure 2 Autocorrelation Function Figure 3 Partial Autocorrelation Function 

 

Based on the results of differencing, autocorrelation functions, and our partial autocorrelation function gets a p of 3, d which 

has a value of 1, and q which has a value of 1. 

C. Model Specification 

Based on the ACF and PACF data, there are 4 models for the ARIMA model with the same d value, namely 1. Following are 

the specifications of the models, 

TABLE 2 

MODEL SPECIFICATION 

ARIMA Model p d q 

ARIMA (0,1,0) 0 1 0 

ARIMA (1,1,0) 1 1 0 

ARIMA (2,1,0) 2 1 0 

ARIMA (3,1 ,0) 3 1 0 

ARIMA (0,1,1) 0 1 1 

ARIMA (1,1,1) 1 1 1 

ARIMA (2,1,1) 2 1 1 

ARIMA (3,1,1) 3 1 1 

 

D. Parameter Estimation 

The following are parameter estimates that can be determined after knowing the ARIMA model. The following parameter 

estimation coefficients consist of AR1, AR2, AR3, MA1, and Log-likelihood which will later be considered in forecasting. 

TABLE 3 
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PARAMETER ESTIMATION 

Model 

 Coefficient Estimation Result 

AR1 AR2 AR3 MA1 
Log- 

Likelihood 

ARIMA (0,1,0)     -230.75 

ARIMA (1,1,0) -0.6167    -222.38 

ARIMA (2,1,0) -0.8375 -0.3444   -220.16 

ARIMA (3,1.0) -0.9264 -0.5753 -0.2709 -0.5580 -218.85 

ARIMA (0.1,1)    -0.699 -220.71 

ARIMA (1,1.1) -0.3497   -0.5580 -219.27 

ARIMA (2, 1,1) -0.5703 -0.1376  -0.4617 -219.11 

ARIMA (3,1.1) -0.756 -0.4358 -0.2171 -0.1868 -218.76 

 

E. Residual Analysis 

In this residual analysis, 2 types of tests were performed, namely, the Shapiro test, and the Ljung to determine which is the best 

model that can be used for forecasting. The model that is passed is only if the value of the p-value is greater than 0.05. 

TABLE 4 

RESIDUAL ANALYSIS 

Model 
Shapiro 

Test 

Ljung Box 

Test 
Description AIC 

ARIMA (0,1,0) 0.2476 0.0001097 Rejected 461.51 

ARIMA (1,1,0) 0.2595 0.154 Accepted 446.76 

ARIMA (2,1,0) 0.07362 0.3934 Accepted 444.33 

ARIMA (3,1.0) 0.1712 0.4422 Accepted 443.70 

ARIMA (0.1,1) 0.02209 0.03444 Rejected 443.42 

ARIMA (1,1.1) 0.08938 0.4187 Accepted 442.55 

ARIMA (2,1.1) 0.07735 0.4645 Accepted 444.23 

ARIMA (3,1.1) 0.1671 0.4631 Accepted 445.51 

Based on table 3.4, it can be seen that from eight models there are only six models passed the Shapiro test and Ljung Box test, 

namely the ARIMA model (1,1,0), ARIMA (2,1,0), ARIMA (3,1,0), ARIMA (1,1,1), ARIMA (2,1,1), and ARIMA (3,1,1) models. 

However, because the difference in AIC values is not too big between all the models that pass, it is necessary to check all forecasting 

points in order to get more efficient results. 

TABLE 5 
BEST MODEL EVALUATION 

Actual Data  

Forecasting Points 

ARIMA 

(1,1,0) 

ARIMA 

(2,1, 0) 

ARIMA 

(3,1,0) 

ARIMA 

(1,1,1) 

ARIMA 

(2,1,1) 

ARIMA 

(3,1,1) 

1243 1290,133 1323,452 1330,204 1310,115 1322,689 1329.22 

975 1296,218 1298,301 1322,006 1306,578 1309,817 1323,389 

1169 1292,466 1311,287 1307,891 1301,815 1312,749 1311,588 

1158 1294,779 1309.073 1317,501 1307.382 1331,141 1316,707 

1203 1293,353 1306.355 1318,939 1307,534 1312,553 1319,246 

After all the estimated points are compared, it can be seen that the model that is closest to the actual data is the ARIMA model 

(1,1,0) compared to the other models. With the Formula: 

𝑦𝑡 =  −0.6167 𝑌𝑡−1 +  𝑒𝑡     (21) 
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Figure 4 QQ Plot 

F. Forecasting 

The following is a graph forecasting the number of goods via rail transportation in Java with a confidence interval of 99. The 

forecasting graph below starts from January 2019 until May 2019 with the ARIMA model (1,1,0). 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 5 Forecasting Graph 

Based on the forecasting results, the following are the point forecast, lower limit, and upper limit for forecasting for the next 

5 months based on the data. 
TABLE 6 

FORECASTING RESULT 

Year Month Estimated Point Lower Limit Upper Limit 

2019 January 1290,133 929,2140 1651,053 

2019 February 1296,218 909,6881 1682,747 

2019 March 1292,466 817,7435 1767,188 

2019 April 1294,779 783,0863 1806.473 

2019 May 1293,353 726,8233 1859,882 

 

G. Comparison 

The following table is the forecasting points and the actual data from January 2019 to May 2019. Although the forecast point 

is not too close to the actual data, this forecasting can be said successful because the actual data is still within the estimation 

interval. 
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TABLE 7 
ERROR ANALYSIS 

Year Month 
Estimated 

Point (ŷ) 

Actual Data 

(y) 
|ŷ − 𝑦| (ŷ − 𝑦)2 

(ŷ − 𝑦)2

𝑦
 

2019 January 1290.133 1243 47.13 2221.52 1.72 

2019 February 1296.218 975 321.22 103181.00 79.60 

2019 March 1292,466 1169 123.47 15243.85 11.79 

2019 April 1294,779 1158 136.78 18708.49 14.4563 

2019 May 90,353,381 1203 1203.66 1293,353 6.31 

 

With that information from table 7, we can get MSE for 12,293.21, RMSE 110.87, MAE 12,233.3, and MAPE 66.6%. 

 

IV. CONCLUSION 

Based on the results of forecasting conducted on data on the number of goods via rail transportation on the island of Java in 

2016-2018, the best model used to predict the number of goods in the next 5 months with MSE values 12,293.21, RMSE 110.87, 

MAE 12,233.3, and MAPE values 66.6% are ARIMA models (1,1,0). Based on the residual analysis, the ARIMA formula (1,1,0) 

is: 

𝑦𝑡 =  −0.6167 𝑌𝑡−1 +  𝑒𝑡                  (22) 

It is proved from the results of the forecasting point which is not far from the actual data. Although the forecasting results are 

not the same, the actual data are still within the estimation interval. It is important for PT. Kereta Api Indonesia to prepare for the 

number of goods that will be transported in the future so they can make efficient policies. 
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