
Journal of Electrical and Electronics Engineering 
Vol. 2, No. 1, June 2018, 7-12 

Received: 13 March 2018  Revised: 15 April 2018 Accepted: 11 May 2018 

 

A Novel Detection Strategy for Kidnapped Robot Problem in 

Monte Carlo Localization Using Corridor-Type Map 
 

Iksan Bukhori1, Zool Hilmi Ismail2, Tohru Namerikawa3 

 
1Study Program of Electrical Engineering, President University, Jalan Ki Hajar Dewantara 17550, Bekasi, 

Indonesia 
2Department of Electronic Systems Engineering, Malaysia-Japan International Institute of Technology 

Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia. 
3Department of System Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku,  

Yokohama 223-8522, Japan. 

Corresponding author: iksan.bukhori@president.ac.id 
 

 

ABSTRACT 

This paper proposed a novel method to detect the kidnapped robot problem event in Monte Carlo Localizationin corridor-like 

map. The proposed method is aimed towards overcoming two commmon drawbacks from existing methods of detection, namely 

the inability to stay accurate across wide array of particles’  convergence level, and a high dependency on the success of recovery 

process. This objective is achived by combining the difference in particle’s weight, maximum current weight, and difference in 

particles’ standard deviation. The addition of these two parameters makes the proposed method to be superior to pure maximum 

current weight parameter for kidnapping detection. A series of simulation tests using corridor-like map are executed to test the 

claim. These simulations show that the proposed method outperforms the maximum current weight parameter in terms of 

accuracy, ability to detect kidnapping during early stage of localization, and independency towards the success of the re-

localization process. 

Keywords: Monte Carlo Localization, Kidnapping Detection, Difference of Weight, Difference of Standard Deviation, 

Early Kidnapping,Recovery Independency

I. INTRODUCTION 

Kidnapped Robot Problem (KRP) in mobile robot 

localization is defined as a condition when the robot is 

instantly moved to other position arbitrarily without any 

prior given information during the operation of the robot 

[1], [7-9]. Kidnapped robot problem is considered one of 

the most difficult problem in Monte-Carlo Localization 

(MCL) [2]. This is due to the nature of particle filter used 

in MCL itself, where the convergence process of 

hypotheses (particles) causes an absence of particles in 

some areas of the map. The better the localization process, 

the more areas in the map lost the particles. This inevitably 

leads to a failure in re-localization if the robot is kidnapped 

to that area. 

Kidnapped robot problem does not often happen in 

practice; however, it is often used to test the ability of 

algorithm to recover from global localization failures. 

Furthermore, the mechanical and sensor faults can lead to 

similar condition to kidnapping condition, thus the 

detection of this event can also be used as fault detection 

[6]. 

For decades, there have been several approaches in 

solving kidnapped robot problem. Some solutions are 

based on visual recognition, such as the ones found in [4] 

and [5]. These approaches, however, are limited to the 

robot with visual-based sensor, such as camera. Some other 

approaches are more flexible by using the intrinsic 

parameters of the MCL itself. Augmented MCL proposed 

in [1] and MCL with mixture distributions [1], [8], and [18] 

are some examples of this category. 

In Augmented MCL, random particles are injected in 

each iteration such that the possibility of particles’ absence 

in kidnapping destination area is reduced. These random 

particles are drawn from either uniform distribution over 

pose space, or the posterior of the measurement. MCL with 

mixture proposal distribution combines regular MCL 

sampling with its dual. 

Despite its flexibility, the former two methods do not 

clearly draw a line between detection and recovery of 

kidnapping. This creates a problem when the concern is not 

only in the re-localization, but also the needs to know when 

the kidnapping really happens, such as in fault detection. 

Other solutions which also depend on intrinsic 

parameters of MCL can be found in [2] and [3]. Zhang 
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et.al in [2] uses maximum weight of current particle set as 

the parameter to detect the kidnapping event. Yi, C. and B.-

U. Choi in [3] uses similar parameter, but instead of purely 

using current weight, they use the entropy of the 

information can be extracted from the weight. These two 

approaches address the detection and recovery separately, 

as what we prefer. 

One other method which addresses detection and 

recovery separately was proposed in our previous paper in 

[19]. This paper introduces a mixture method of MCW and 

two other intrinsic parameters; weight parameter and the 

standard deviation of particles. 

This paper is a complement of the paper in which 

Landmark-based map is used to test the method. This paper 

test the method using a corridor-like map which confirms 

that the method is applicable in at least two types of map. 
The rest of the paper is organized as follows. In chapter 

II Bayes filter and Monte Carlo Localization are briefly 
explained. Chapter III explains the definition of some 
terms used throughout the paper. Chapter IV reviews 
MCW method for kidnapping detection. The method we 
propose is then delivered in detail in Chapter V. Chapter 
VI delivers the simulations result of the comparison 
between the proposed method and MCW, and chapter VII 
gives the Conclusion. 

 

II. BAYES FILTER AND MONTE CARLO LOCALIZATION 

In mobile robot localization practice, it is almost 

impossible for a robot to know exactly its coordinates and 

heading (collectively known as pose) in the given map. 

Rather, the robot should infer them from the data from 

environment. The obtained state is then called belief. The 

belief of the robot is defined as 

 

 (1) 

  

This posterior is the probability distribution over the 

state at time t, given all past 

measurements and all past 

controls . Sometimes it is also useful 

to consider the belief before the current measurement 

taken, that is 

 

 (2) 

 

MCL is a Bayes-based localization algorithm. It 

provides a powerful tool to calculate posterior , 

given measurement and control data [1], [11].  Bayes filter 

is based on Markov world assumption, i.e. past and future 

data are independent if one knows the current state  [1]. 

By implementing Bayes rule and this Markov world 

assumption, the belief posterior can be defined as  

  

 (3) 

  

The term  is defined as the prediction or 

motion model, since it reflects the state transition due to 

robot motion. The probability  itself is called 

correction or sensor model, since it incorporates sensor 

reading to update robot state. is normalization constant, 

ensuring the final result to be normalized to one. 

Bayes filter gives freedom to the choices of 

representation for the posterior. MCL represents the 

posterior  by a set of  weighted samples 

distributed according to the posterior [1], [3]. The density 

of the samples proportionally represents the likelihood of 

the robot’s pose being there. 

 

 ;  (4) 

 

Each particle  represents the hypothesis of the 

robot’s pose at time .The is the non-negative number 

called weight of particle. It indicates how good particle 

in representing the robot’s pose. 

The basic MCL algorithm, as summarized from [1] and 
[2] is depicted in table 1. It accepts previous state , 
past controls , past measurements , and map 
information . 

Table 1. MCL Algorithm 

1. MCL Algorithm (  

2.  

3. for n = 1 to N do 

4.      generate  

5.      calculate weight  

6.       

7. end for 

8. normalize  

9. for n = 1 to N do 

10.       draw  with probability   

11.       Add  to  

12. end for 
return  

 

III. DEFINITION OF TERMINOLOGIES 

There are some terminologies throughout this paper 

which adresses kidnapping event. The first is the 

kidnapping detection. This process is defined as a process 

which detects the KRP event at any time t where  

. We omit the first time step under common 

assumption that no kidnapping would occur at the very first 

time step of robot’s operation. The detection process will 

only detect the time t of kidnapping, not the place the robot 

is being kidnapped to. 



 

 

9 

 

Journal of Electrical and Electronics Engineering 

Kidnapping point is defined as the time instance t of 

when the robot is really kidnapped. The match between 

detected kidnapping and the kidnapping point will 

determine the success of KRP event detection. The 

successful detection has the following criterias: 

1. The detection should occur only once, since we 

consider single kidnapping event only. 

2. The time of detected kidnapping should be the 

same as the real kidnapping. 

These two criteria are used to compare the accuracy 

between MCW and the proposed method. In this paper, the 

kidnapping itself is divided into two; Early Kidnapping and 

Late Kidnapping. The former one is the kidnapping which 

occurs during pre-convergence state, i.e. there are some 

particles spread around the map. The later one is the 

kidnapping in which the particles are already converged. 
The last term is the recovery/re-localization process 

which is defined as a method to localize the robot after 
kidnapping event. We will use recovery and re-localization 
interchangeably in this paper. 

IV. MAXIMUM CURRENT WEIGHT METHOD 

 

The detection in MCW can be denoted by the following 

equation; 

 (5) 

Where  is the maximum weight of the particle set 

at time t, while    is the threshold to detect the kidnapping. 

This formulation leads to two problems; 

A. Early Kidnapping Detection 

If the robot is kidnapped early, the weight of particles 

will still be quite high. This is due to the fact that it is very 

likely there would be some particles at/near where the 

robot is being taken to (see Fig. 1). Therefore, the 

kidnapping around this time step will be very likely 

undetected if we rely on weight parameter. In Figure 1, the 

robot is being kidnapped at t=3. There is no recovery 

strategy applied, but we can see the robot can still re-

localize itself as shown by the constant maximum weight 

of 1. This is again due to the existence of particles near the 

point where the robot is after being kidnapped. 

As can be seen in Fig 1, the maximum weight at t = 3 is 

still high. This causes the inability of Eq. 5 to detect the 

kidnapping. Forcing this equation to detect the kidnapping 

at t = 3 by setting  will make multiple detection 

outside t = 3, which means the detection fails as what had 

been discussed in chapter III. Kidnapping in this part (early 

kidnapping) does not affect the overall localization too 

much. However, sometimes an information of when the 

kidnapping happens can be used as fault detection such that 

one will know something unnatural happens around the 

kidnapping point (t=3 in the example). MCW obviously 

fails at obtaining this information. 
. 

 

Figure 1. Maximum Weight of Particles with Kidnapping 

Event Happens at t = 3. 

 

B. High Dependency to the Success of Recovery 

There is also a high dependency between maximum 

current weight parameter and the ability of the recovery 

strategy. The weight of particle is based on how close the 

observation from particle to the observation from the robot. 

Therefore, when the recovery fails, the gap between two 

observations will be high and thus resulting in lower 

particles’ weight (see Fig. 2). 

From the figure we can see that when there is no recovery 

strategy (extreme case of recovery failure) to re-localize 

the robot, the maximum weight drops very low. Forcing 

the detection to detect kidnapping will result in multiple 

detections at later time steps, thus the failure in detection. 

 

 
Figure 2. Max Weight of Particles with Kidnapping Event 

at t =50 and no Recovery 
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The two drawbacks in MCW give motivation to devise 

a new detection strategy which can detect the kidnapping 

of the following nature: 

a) The detection should be able to detect kidnapping in 

large range of particle convergence  

The detection should be highly independent to the success 

of the recovery, i.e. detection of kidnapping with high 

accuracy can still be obtained when the recovery fails. 

 

V. PROPOSED METHOD 

 

A new method of kidnapping event detection is 

proposed in [19] which uses three parameters as 

kidnapping detector and a particles’ convergence detector 

to separate early kidnapping (EK) with late kidnapping 

(LK). The three kidnapping detectors are: 

1. Change in standard deviation ( ) 

2. Change in mean of weight  

3. Maximum Current weight ( ) 

The first parameter is used in early kidnapping case, 

and the latter two are for late kidnapping case. A 

convergence detector  is used to differentiate the two 

cases.  This detector is defined as 

 

            

(6) 

Where  denotes the percentage of the number of 

particles exist within a unit distance from the mean. is 

the threshold to decide whether the particles is in 

convergence state or not. The complete kidnapping 

condition is then described as follows 

 

        

(7) 

 
(8) 

VI. SIMULATION RESULT 

 

A series of simulations is designed to test the method. 

There are two types of map used in the test; the landmark-

based map as presented in [19] and the corridor-like map. 

These two maps differ only in the way of weighting 

particles, how the sensor reading is used, and the limitation 

of robot’s movement. The method is designed to not 

depend on these factor, thus the tests against these two 

maps should confirm it. 

For each type of map, the proposed method is tested 

against the MCW to see which of the two is closer to the 

desired nature of kidnapping detection stated at the end of 

chapter IV. The tests are also divided into two categories to 

test the stated objectives. The first one is the kidnapping 

without recovery, and the the other one is kidnapping with 

recovery. 

Each test is run to detect 200-time instances of 

kidnapping, .  For each , the 

simulation with 200-time steps is run for 100 times. The 

number of successful kidnapping detection is then 

calculated for each , and divided by 100 to obtain the 

percentage of success rate.  

The parameters of the detection method we test is 

presented in Table 2, while Fig 3 depict the corridor-like 

map in the simulations.  

 

Table 2. Detection Method Parameters 

 Proposed Method MCW 

     

Landmark 70 0.1 -0.3 0.05 0.1 

Corridor 70 0.1 -0.2 0.01 0.1 

 

 
Figure 3. Corridor-like Map used in Simulations. The 

curvy line describes the robot’s normal trajectory (Without 

Kidnapping) 

A. Detection without Recovery 

In order to test the independency of the methods 

towards recovery, a kidnapped robot problem is simulated 

without re-localization process. The test result is shown in 

Fig. 4. 
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Figure 4. Success Rate per Kidnapping Point in Corridor-

like map without recovery 

 

In Fig. 4, it is proven that the detection accuracy of the 

proposed method does not depend heavily on the success 

of recovery while MCW clearly fails except at the very end 

of iteration (t=200). 

 

B. Detection Test with Recovery 

Because the MCW fails in detection without recovery, 
other type of tests are devised. In these tests, the recovery 
strategy is executed at the time step right after the 

kidnapping point regardless of the 

success of the detection of either method. The recovery 
strategy employed is the most basic one, which is the 
particles’ re-initialization method. This recovery process is 
executed by replacing current set of particles by the 
randomly distributed particles drawn from uniform 
distribution over the pose space inside the map, the same as 
particles initialization at the very beginning of localization 
process. How the two methods in behave under this test is 
depicted in Fig. 7. 

 

 

Figure 5. Success Rate per Kidnapping Point in Corridor-

like Map with Recovery 

 

The result in Fig.4 and Fig. 5 indicates that the 

proposed method still outperforms the MCW in corridor-

like map. An interesting thing happens in 

for landmark-based map case. It can be 

seen that MCW even fails to correctly detect the 

kidnapping. In this area, the robot is kidnapped to the 

region outside the map (see Fig. 4 and eq. 9). Because the 

re-localization strategy is implemented only inside the 

map, the recovery most likely fails, thus a failure in 

detection by MCW. 

 

VII. CONCLUSIONS 

A new method in detecting the kidnapping event in 

Monte Carlo Localization is proposed. The method relies 

on three parameters, the change in weight of particles, the 

change in standard deviation of the particles, and the 

maximum current weight. A series of simulation tests 

comparison between the proposed method and pure Max 

Current Weight (MCW) is also conducted using corridor-

like map. The results show that the proposed method can 

still detect the early kidnapping event with high accuracy 

when the MCW fails. This ability of kidnapping detection 

even when the recovery process itself is unneeded 

(characteristic of early kidnapping) shows that the 

proposed method is able to be a good fault detector 

independent to the needs of recovery. 

The proposed method is also able to maintain high 

accuracy under the failure in recovery, showing that the 

independency towards the success of the recovery is very 

high compared to MCW. This independency is important 

to make sure that the information of when kidnapping 

happens is not disturbed by the success of recovery 

process. 

These results complemented the results in [19] which 

shows the superiority against MCW in landmark-based 

map. 
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