
Journal of Actuarial, Finance and Risk Management (JAFRM) 

Vol. 1(1), June, 2022. 

 

 

9 

 

Logistic Regression Analysis of  Demographic and Vehicle Condition 

for Purchasing Vehicle Insurance  

Gabriel Azhar1, Muhammad Cahirul Rahman2, Rosyid Nur Salam3, Fauziah Nur Fahirah 

Sudding4* 

1,2,3,4 Study Program of Actuarial Science, School of Business, President University, 17550, Indonesia 

*Corresponding author: fauziahfahirah@president.ac.id 

 

 

Abstract— Insurance is a contract, represented by a policy, in which an individual or entity receives financial 

protection or reimbursement against losses from an insurance company. Insurance policies are used to hedge 

against the risk of financial losses, both big and small, that may result from damage to the insured or her property, 

or from liability for damage or injury caused to a third party. Building a model to predict whether a customer 

would be interested in Vehicle Insurance is extremely helpful for the company because it can then accordingly 

plan its communication strategy to reach out to those customers and optimize its business model and revenue. In 

this research, we use the secondary data that collected in India in 2020, which analyzes vehicle condition, 

demographics, and owning a driver’s license on vehicle insurance buying interest. The method used in this research 

is the Logistic Regression, the response variable is the Response (of buying vehicle insurance interest), and the 

independent variables are Gender, Driving License, Previously Insured, Vehicle Age, and Vehicle Damage. The 

result of this research showed that the Previously Insured, Vehicle Age, and Vehicle Damage have a correlation 

to the Response.  
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I. INTRODUCTION  

 Traffic accidents have always been a global concern and according to World Health Organization (WHO), they 

are estimated to be eight leading causes of death for all group of age. The incident occur for various reasons. Most 

of the common causes are human mistakes, vehicle conditions, and bad weather. Each year, there are 

approximately 1.3 million people die due to this incident. This incident not only take lives but also cause financial 

loss to the individuals. Hence, it is very important to anticipate this unexpected event in the future by considering 

vehicle or auto insurance as financial protection.  

 Vehicle insurance is a legal contract between the insurance company and policyholder to provide compensation 

to the insured due to unexpected losses to the vehicle against traffic injuries or any kind of damages. It is the best 

form of security to prevent significant payment as a result of calamities. Auto insurance does not only cover full 

or partial loss sustained by the insured vehicle, but also offers coverage for third-party liabilities. Due to economic 

issues, getting insurance is used to be not a priority for most people, especially in developing countries. However, 

auto insurance is now being recognized and even obligated in some countries to drive legally. Therefore, building 

a model to project the number of potential customers is beneficial and informative to the company since it can then 

accordingly plan its communication strategy and optimize its business model and revenue.  

 Some researchers have developed some studies to analyze customer behavior. For example, Guillen, M., et all.  

(2002) used log-linear regression to analyze customer loyalty in insurance industry. The result of this study 

indicates customers having motor insurance have much higher risk of canceling one of their policies and the higher 

risk period to cancel are between 2 and 4 years since their first policy issue. In a separate study, Dragos, C. M., 

and Dragos, S. L. (2017)  also analyze customer behavior in auto insurance but using a different method. The 

researchers used discrete choice models to define two behavioral factors when customers decide to purchase new 

motor insurance policy. Those two factors are the decision to purchase the insurance or not and the motive behind 

the non-subscription of the insurance policy. The results show that an individual willingness and a lower education 

level factors increase the likelihood of not buying a motor insurance policy. On the other hand, factors such as the 

willingness not to purchase insurance, car annual mileage, and the ratio between estimated car price and customer 

wage are statistically significant in terms of motivation to not buy an insurance policy. An, S. H., Yeo, S. H., and 

Kang, Minsoo. (2021) compared two methods to build a model for purchasing automobile insurance. The authors 

use two-class logistic regression and two-class boosted decision tree. The results show that these two models can 

be used to design a new model with high accuracy to project customers in the future even though the number of 

potential insured does not significantly increase. Another study about customer behavior is Duan, Zhengmin.,et 

https://www.investopedia.com/terms/h/hedge.asp
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all. (2018) use logistic regression to auto burden index to design a new rate-making model for auto insurance. The 

authors use data from Chinese insurance company and the results show that the auto burden index has good-fitted 

to rate-making model. However, due to the limitation of data source, the authors found that the coefficient of this 

factor is not really significant in the model. 

 According to the studies above, the authors conclude that log-linear regression is one of the statistical methods 

that will be good-fitted to be used for building a model in the insurance industry and it encourages authors to study 

customer behavior in subscribing insurance policy using this method.  Variables such as response, gender, driving 

license, previously insured, vehicle age, and vehicle damage are chosen to be used in this paper, and the type of 

data used is secondary data collected in India in 2020. The aim of this study is to analyze the association between 

the variables, so it can be used to determine the best-fitted model for projecting a potential number of customers 

for vehicle insurance using log-linear regression. 

II. LITERATURE REVIEW 

This regression is statistical modeling for response variables in binary data, the outcome will be success and 

failure (Nugraha, 2014). Given Y (the response variable) and X (the explanatory variable), assume the relationship 

of 𝑌 = 𝛽0 + 𝛽1𝑋, here 𝐸(𝑌|𝑋) is a random variable. 

A. Binomial Distribution and Logistic Regression  

Let yi become response variable which has a binary data (value 1 or 0)    

        𝑦𝑖  =  1 if it is success 

 𝑦𝑖  =  0 if it is failure,  

With yi is a realization of a random variable from Yi. the probability of Y is 

 

 ( 1)   and  ( 1) (1 )i i iP Y i P Y = = = = −  (1) 

 

Yi has a Bernoulli Distribution with parameter 𝜋𝑖, then we can write 

 

 1( ) (1 )yi yi

i i i iP Y y   −= = −  (2) 

For 𝑦𝑖= 0, variance of 𝑦𝑖will be  

 ( )  and ( ) (1 )i i i i i iE Y Var Y   = = = −  (3) 

   

Parameter 𝜋𝑖  is based on X, which is 

𝜋𝑖 = 𝜋𝑖(𝑋𝑖) 

Since variable of 𝑋𝑖 is independent (predictor), we can assume that the predictor doesn’t affect the mean and 

variance itself, then this condition doesn’t fit into a binary data response. Example, let 𝑛𝑖~ a sample size in group 

i, and 𝑦𝑖  ~ a value of success in group i, then 

 ( ) (1 ) i i
i n y

i i i i

i

n
P Y y

y
  − 

= = − 
 

 (4) 

and 

 ( )  and ( ) (1 )i i i i i i iE Y n Var Y n   = = = −  (5) 

 

Where, if 𝑛𝑖 = 1, means the binomial distribution becomes Bernoulli distribution. 

 

B. Logistic Regression Model with a Single Independent Variable 

Recall that Y (the response variable) and X (the explanatory variable), become Y (the response variable binary) 

and X (predictor variable). Let 𝜋(𝑥) become a probability of success, then 𝜋(𝑥) will be a parameter in the Binomial 

distribution. Let 𝑌 = 1 and X is the dependent variable, so the regression will be 
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and for the probability of logit has a linear function, such as: 
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C. Logistics Regression Model with Many Independent Variables 

Logistics regression is a regression that uses two different values to express its responsiveness (Y), usually the 

values 0 (fail) and 1 (success) are used. The distribution function used is the logistic distribution with the notation 

π(X) to express the conditional mean of Y if given the covariate vector X =  ( 𝑥1, 𝑥2, . . . . . 𝑥𝑝)𝑇. 

The logistic regression model is: 

 
exp( )

( )
1 exp( )

T

T

X
x

X





=

+
 (8) 

with 𝑋𝑇𝛽 =  𝛽0  +  𝑥1𝛽1+. . . . + 𝑥𝑝 𝛽𝑝 

𝛽 = (𝛽0, 𝛽1, . . . . . ., 𝛽𝑝)𝑇 is a parameter vector. 

 

Defined as a logit π(X) transformation, namely: 

 
( )

( ) log
1 ( )

Tx
g x X

x





= =

−
 (9) 

So that g(X) is linear in the 𝛽 parameter. 

 

D. Maximum Likelihood Estimator for Logistic regression 

To determine the regression model, the value of 𝛽 is estimated first using the maximum likelihood method. 

Log-likelihood function: 

 
1

log ( ) { log( ) ( ) log(1 )}
n

i i i i i

i

L y n y  
=

= + − −  (10) 

The formula above is derived from the following formula 

 1( ) (1 )yi yi

i i i iP Y y   −= = −  (11) 

 
From this log-likelihood function, the first and second derivatives are sought. The parameter estimate 𝛽 is the 

value of 𝛽which maximizes the log-likelihood function on the sample data (X, Y).  
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and 

 
2 log (

(
 T

L
H
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
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 
 (13) 

 

Matrix H (𝛽)is called the Hessian matrix which is a negative definite matrix. 

Based on the first derivative condition, the 𝛽 parameter estimation using the maximum likelihood method is: 

 

 
1 1
[ ( )] 0  and  [ ( )] 0

n n

iji i
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For j = 0,1, ..., p 

 

The second derivative of the log-likelihood function for all parameters is called the Hessian (H) matrix which has 

elements: 
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and 
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E. Logistics Regression Inference 

We have learned how logistic regression helps to illustrate the effect of predictor variables and binary response. 

Parameters in the logistic model can be estimated using the Maximum Likelihood Estimation Method (MLE). This 

section will discuss the way estimator properties are being used to infer the parameter [1]. 
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1) Confidence Interval 

If there is a huge number of samples, the interval confidence of 𝛽𝑗 in logistic regression model: 

 

Logit [𝜋(𝑥)] = 𝛽0 + 𝑥1𝛽1+. . . +𝑥𝑝𝛽𝑝  

with coefficient interval 

 ˆ ˆ( )j jz Var     (17) 

  

where 𝛽�̂� is the MLE of  𝛽 and j = 0,1, ...,𝑝. 

 

2) Significance Test 

To test the hypothesis H0:𝛽𝑗= 0, in large samples can be used test statistics 

 
ˆ

ˆ( )

j

j

z
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


=  (18) 

The z statistic has a standard normal distribution. 
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 (19) 

 

The 𝑧2statistic has Chi-square distribution with degree of freedom 1. This z statistic is called the Wald 

test statistic. The likelihood-ratio is more effective compared to the Wald test statistic in the terms of 

large samples, more trusted, and mostly being used in practice. 

 

3) Model Fit test 

The measure of deviants can be used to determine whether the model fits the data or not and calculate 

how much it fits. The deviation statistic (D) measures the mismatch between the observed and expected 

value in the model. 

 

 
1

2 log ( ) log
k
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or 

 
1
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k
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The D statistic has a Chi-square distribution. 

In general, variable (X) is separated into two groups 

𝑋 = (𝑋1, 𝑋2) and 𝛽 = (𝛽1  𝛽2)𝑇 

Vector 𝛽1consists of parameter 𝑝1and vector 𝛽2consists of parameter 𝑝2. Further is hypothesis testing 

H0:𝛽2= 0 or H0:𝛽2≠ 0 

Null hypothesis (H0) claims that predictor variable in the second group (𝑋2) does not influence Y 

response. This is identical with the significance test parameter 𝛽2. 

Let D (𝛽1) defines the deviation value of the model that enter variable 𝑋1and D(β) defines the deviation 

value of the model that enter variable 𝑋 = (𝑋1, 𝑋2). Next, the difference between the two deviation values 

is 

 
2 2 1

1

( )
( ) (   or  2 log

( )

L
X D D X

L


 



 
= − ) = −  

 
 (22) 

has Chi-square distribution with degree of freedom 𝑝2(for a large sample).  Parameter 𝑝2 is the difference 

in the number of parameters in D (𝛽1) and D(β). 

III. METHODOLOGY 

A. Data Preparation 

This research data is the secondary data taken from Anmol Kumar's Health Insurance Cross-Sell Prediction. 

Response data for this research is going to be whether customers from past years are interested in buying vehicle 

insurance. 
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Table 1 is a slice of the data that will be used later in the analysis. Where it shows the response about Gender, 

Driving License, Previously Insured, Vehicle Age, and Vehicle Damage and the final response.  

TABLE 1 

INDEPENDENT AND RESPONSE VARIABLE DATA 
Gender Driving License Previously Insured Vehicle Age Vehicle Damage Response 

0 1 0 1 1 1 

0 1 0 1 0 0 

0 1 0 1 1 1 

0 1 1 0 0 0 

1 1 1 0 0 0 

1 1 0 0 1 0 

0 1 0 0 1 0 

1 1 0 1 1 1 

1 1 1 0 0 0 

1 1 1 0 0 0 

1 1 0 1 1 1 

1 1 1 0 0 0 

1 1 1 1 0 0 

0 1 0 1 1 0 

0 1 1 1 0 0 

... .... ... ... ... ... 

 

Annotation:  

● Gender 

0 = Women; 1 = Men 

● Driving license  

0 = Didn't own; 1 = Own 

● Previously Insured 

0 = Not insured; 1 = previously insured 

● Vehicle Age 

0 = < 1 y e a r; 1 = 1 - 2 y e a r s 

● Vehicle Damage 

0 = not damaged; 1 = damaged 

● Response 

0 = Didn’t buy insurance; 1 = buy insurance 

 

B. Model p-value Significance Comparison 

Model p-value significance comparison is used to see if there is a correlation between the independent variables 

and the response variable. We have 5 independent variables, which are Gender, Driving License, Previously 

Insured, Vehicle Age, and Vehicle Damage, and our response variable is Response (of buying vehicle insurance 

interest). With the help of R software, the result of the p-value for each combination of model is obtained in the 

Table 2.  

Based on the the table , the p-value is obtained for each independent variable, and the hypothesis is as follows: 

a. Hypothesis 

H0: There is no correlation between the independent variable to the response variable. 

H1: There is a correlation between the independent variable to the response variable. 

b. Significance Level 

𝛼 = 0.05 

c. Critical Area 

Accept H0 if p-value > 0.05 

Reject H0 if p-value < 0.05 

d. Decision 

Depends on each model. 

e. Conclusion 

Each model has a different combination of independent variables, and every independent variable that has p-

value greater than 0.05 does not have a correlation to the response variable, and vice versa. If we can see, all 

models said that Driving License does not have a correlation to the Response. Also, almost all models said that 

Gender does not have a correlation to the response since only 2 of 40 models have the p-value of Gender smaller 

than 0.05. Then, we can conclude that the matching model from the p-value significance comparison is the model 



 

14 

 

that has the other three independent variable besides Gender and Driving License, which is Previously Insured, 

Vehicle Age, and Vehicle Damage. And Bin 3.4.1 is the model. 

 

TABLE 2 

 MODEL P-VALUE SIGNIFICANCE COMPARISON 

Model Intercept Gender Driving 

License 

Previously 

Insured 

Vehicle Age Vehicle Damage 

Bin5 0.000678 0.96 0.471 2.5E-09 2.78E-09 8.89E-10 

Bin 4.1 0.0266 0.7022 0.533 < 2e-16 6.68E-10 - 

Bin 4.2 0.000507 0.503946 0.555285 9.68E-10 - 9.28E-10 

Bin 4.3 5.46E-09 0.884 0.393 - 8E-11 < 2e-16 

Bin 4.4 < 2e-16 0.27 - 7.99E-08 1.37E-12 7.82E-13 

Bin 4.5 0.944 - 0.957 7.91E-08 1.82E-12 7.92E-13 

Bin 3.1.1 0.951 - 0.958 1.16E-14 < 2e-16 - 

Bin 3.1.2 < 2e-16 0.368 - 1.11E-14 < 2e-16 - 

Bin 3.1.3 0.951 0.547 0.961 - <2e-16 - 

Bin 3.1.4 0.954 0.878 0.958 3.93E-16 - - 

Bin 3.2.1 0.946 - 0.957 2.86E-08 - 6.87E-15 

Bin 3.2.2 < 2e-16 0.827 - 2.84E-08 - 7.40E-15 

Bin 3.2.3 0.941 0.784 0.958 - - <2e-16 

Bin 3.2.4 0.226 0.369 0.884 <2e-16 2.42E-12 1.92E-12 

Bin 3.3.1 0.000156 - 0.754 - 0.000014600 < 2e-16 

Bin 3.3.2 < 2e-16 0.755 - - 0.000000151 < 2e-16 

Bin 3.3.3 0.000953 0.725 0.848 - - < 2e-16 

Bin 3.3.4 0.00747 0.68016 0.95522 - < 2e-16 - 

Bin 3.4.1 < 2e-16 - - 5.54E-12 0.00000217 5.24E-11 

Bin 3.4.2 < 2e-16 0.755 - - 0.000000151 < 2e-16 

Bin 3.4.3 < 2e-16 0.668 - 1.96E-12 - 3.76E-12 

Bin 3.4.4 < 2e-16 0.941 - < 2e-16 0.000000019   

Bin 3.5.2 0.000156 - 0.754 - 0.000000146 < 2e-16 

Bin 3.5.3 0.00592 - 0.80099 1.97E-12 - 3.24E-12 

Bin 3.5.4 0.0686 - 0.7783 < 2e-16 1.32E-08 - 

Bin 2.1.1 <2e-16 0.369   <2e-16 - - 

Bin 2.1.2 <2e-16 0.799 - - <2e-16 - 

Bin 2.1.3 <2e-16 0.396 - - - <2e-16 

Bin 2.1.4 0.94284 0.00436 0.95016 - - - 

Bin 2.2.1 0.961 - 0.964 2.96E-16 - - 

Bin 2.2.2 0.936 - 0.949 - <2e-16 - 

Bin 2.2.3 0.951 - 0.964 - - <2e-16 

Bin 2.3.1 < 2e-16 - - 5.91E-15 1.67E-12 - 

Bin 2.3.2 < 2e-16 - - 2.15E-08 - 3.50E-12 

Bin 2.4.1 < 2e-16 - - - 3.72E-10 < 2e-16 

Bin 1.1 < 2e-16 0.00494 - - - - 

Bin 1.2 0.943 - 0.95 - - - 

Bin 1.3 < 2e-16 - - 3.04E-16 - - 

Bin 1.4 < 2e-16 - - - < 2e-16 - 

Bin 1.5 < 2e-16 - - - - < 2e-16 
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C. Model AIC Comparison 

AIC is used when you have multiple model options, determining the quality of each model to be then compared 

to one another, while finding the best model which has the lower AIC level than another. (Zajic, 2019). Here we 

will compare the AIC of every model that we have, to filter the better model according to this method. According 

to the Table 3, we can conclude that model Bin 4.4 and Bin 5 are the models with the lowest AIC. 

 

TABLE 3 

MODEL AIC COMPARISON 
Model AIC Model AIC Model AIC 

Bin 5 2725.74 Bin 3.3.1 2798.14 Bin 2.1.3 2832.10 

Bin 4.1 2826.40 Bin 3.3.2 2790.81 Bin 2.1.4 3622.26 

Bin 4.2 2763.87 Bin 3.3.3 2834.08 Bin 2.2.1 2893.69 

Bin 4.3 2792.80 Bin 3.3.4 3431.82 Bin 2.2.2 3441.20 

Bin 4.4 2723.77 Bin 3.4.1 2730.34 Bin 2.2.3 2844.37 

Bin 4.5 2732.31 Bin 3.4.2 2851.09 Bin 2.3.1 2831.68 

Bin 3.1.1 2833.68 Bin 3.4.3 2761.87 Bin 2.3.2 2773.33 

Bin 3.1.2 2824.40 Bin 3.4.4 2824.40 Bin 2.4.1 2796.16 

Bin 3.1.3 3431.82 Bin 3.5.2 2798.14 Bin 1.1 3620.91 

Bin 3.1.4 2879.99 Bin 3.5.3 2775.32 Bin 1.2 3652.52 

Bin 3.2.1 2775.32 Bin 3.5.4 2833.68 Bin 1.3 2891.74 

Bin 3.2.2 2761.87 Bin 2.1.1 2878.03 Bin 1.4 3439.33 

Bin 3.2.3 2834.08 Bin 2.1.2 3429.94 Bin 1.5 2842.38 

Bin 3.2.4 2879.99       

 

 

D. Best Model Comparison (Haslem Test) 

TABLE 4 

HOSLEM TEST 
 hstest p value hstest x 

Bin 3.4.1 0.98 2.022 

Bin 5 0.97 2.36 

Bin 4.4 0.97 2.33 

qchisq (0.95,8)  15.51 

 

 In hoslem test, we compare the p-value of every model that has passed the P-value and AIC comparison. We 

will then do hoslem test to see whether the p-value and x square passed the test. The p-value is said to be passed 

from the hoslem test when p > 0.05. and x square is said to be passed when hstest x < x square from the table. 

According to Table 4, we can see that every model passed the test for both p-value and x square value. But model 

3.4.1 has the best value because it has the biggest p-value. 

IV.  RESULTS AND ANALYSIS 

     After analyzing the models from every combination of variables, we got 3 best models. And by comparing it 

again using hoslem test as mentioned in 3.3, we got model 3.4.1 consisting of Previously Insured, Vehicle Age, 

and Vehicle Damaged as the variable. The model itself could be written as 

 

𝑌 =  −3.21 − 3.66𝑋1 + 0.55𝑋2 − 1.6685𝑋3 

 1 2 3

1 2 3

exp( 3.21 3.66 0.55 1.6685 )

1 exp( 3.21 3.66 0.55 1.6685 )

X X X
Y

X X X

− − + −
=

+ − − + −
 (23) 

where 

𝑋1 = Previously Insured 

𝑋2 = Vehicle Age 

𝑋3 = Vehicle Damage 

This also means that these three variables are the most significant variable for analyzing the probability of 

someone buying the insurance or not. While the others who doesn’t included in the model were not significant 

enough to be considered. 
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V. CONCLUSION AND IMPLICATION 

According to the analysis above, the authors believe that logistic regression is an effective method to create 

models to assume the probability of someone deciding to buy vehicle insurance or not. We believe that we have 

created the best model to be used within the data available and we hope that this model can be applied in insurance 

companies. Although every company might have different available data and different trends or different types of 

customers, this model can be used as a comparison or as a consideration. We suggest for future research to be done 

with different regression or maybe add some tests to compare the result as we got in this research. 
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