Spatial Data Modelling for Irrigation Canal Development using Decision Tree Algorithm C4.5 Method

Anastasia Lidya M aukar, Erri Wahyu Puspitarini, Anik Vega Vitianingsih, Morinda Rori Rosalina, Fitri Marissa

Abstract


The development of irrigation canals is one of the optimal ways to increase food production. These efforts could assist farmers in using water to increase the production of agricultural products, especially rice. The purpose of the discussion of this paper is to determine the classification of areas that are necessary or not in the development of irrigation canals based on Web-GIS technology. The Decision Tree Algorithm C4.5 method is used in the spatial data modelling process based on land type, rice productivity, water availability, water demand, and rainfall parameters. The results of spatial data modelling with the Decision Tree Algorithm C4.5 method get an accuracy value of 83%, which states that this method is recommended for further research with the same data behaviour. The benefits of this research can be used as a policymaker to determine the priority of irrigation canal development based on the danger of drought level with a high category.

Keywords


spatial data modelling, irrigation canal development, decision tree, C4.5 method, Web-GIS

Full Text:

PDF

References


I. M. Yoga Prasada, A. Dhamira, and A. Dwi Nugroho, “Supply response of paddy in east java: policy implications to increase rice production,” Agrar. J. Agribus. Rural Dev. Res., vol. 4, no. 2, 2018.

Statistics Indonesia, "The 2020 harvested area and production of paddy in Indonesia", 2020. [Online]. Available: https://www.bps.go.id/publication/2021/07/12/b21ea2ed9524b784187be1ed/luas-panen-dan-produksi-padi-di-indonesia-2020.html#:~:text=Sementara%20itu%2C%20produksi%20padi%20pada,dengan%20produksi%20beras%20tahun%202019.

ADB, Policies to Support Investment Requirements of Indonesia’s Food and Agriculture Development During 2020-2045. 2019.

C. B. Luttrell, Outlook for Agriculture, vol. 58. 1976.

N. A. for D. Management, “Strengthening National Disaster Databases in Asia Study in Indonesia,” 2013.

N. A. for D. Management, Indonesia National Disaster Management Plan 2010-2014. 2010.

J. Liu et al., “Water quality in irrigated paddy systems,” Irrig. Agroecosystems, pp. 1–17, 2019.

P. R. Indonesia, Undang-Undang RI No 17 Thn 2019 Tentang Sumber Daya air. 2019.

Suparwoto, “Pembangunan dan pengaruh waduk pacal terhadap pertanian masyarakat kabupaten Bojonegoro,” vol. 2, no. 3, pp. 90–103, 2014.

C. Anam and A. Amiroh, “Kajian Lahan Kritis dan Sumber-Sumber Air di Lamongan,” J. Kelitbangan,vol. 2, no.4, pp. 66–74, 2019.

“https://tubankab.go.id/entry/pemkab-perbaiki-saluran-irigasi-di-12-kecamatan.” .

A A. W. Worqlul, Y. T. Dile, J. Jeong, Z. Adimassu, N. Lefore, T. Gerik, R. Srinivasan, and N. Clarke, “Effect of climate change on land suitability for surface irrigation and irrigation potential of the shallow groundwater in Ghana,” Computers and Electronics in Agriculture, vol. 157, pp. 110–125, 2019.

N. Tryfona and C. S. Jensen, “Conceptual data modeling for spatiotemporal applications,” Geoinformatica, vol. 3, no. 3, pp. 245–268, 1999.

G. P. M. Spagnuolo, Heterogenous Spatial Data: Fusion, Modeling, and Analysis for GIS Applications. Morgan & Claypool, 2016.

M. Paul, M. Negahban-Azar, A. Shirmohammadi, and H. Montas, “Assessment of agricultural land suitability for irrigation with reclaimed water using geospatial multi-criteria decision analysis,” Agric. Water Manag., vol. 231, pp. 1–15, Dec. 2020.

H. Rengganis, “Zonasi Wilayah Pendayagunaan Sumber Daya Air untuk Pembangunan Irigasi di Pulau Sumba, Nusa Tenggara Timur,” Anal. Kebijak. Pertan., vol. 14, no. 1, p. 17-33, 2018.

Z. Maddahi, A. Jalalian, M. M. K. Zarkesh, and N. Honarjo, “Land suitability analysis for rice cultivation using a GIS-based fuzzy multi-criteria decision making approach: Central part of amol district, Iran,” Soil Water Res., vol. 12, no. 1, pp. 29–38, 2017.

A. Nurkholis and I. S. Sitanggang, “A spatial analysis of soybean land suitability using spatial decision tree algorithm,” Proc.of SPIE, Dec. 2019, p.1137201-1-10.

P. Christias, I. N. Daliakopoulos, T. Manios, and M. Mocanu, “Comparison of three computational approaches for tree crop irrigation decision support,” Mathematics, vol. 8, no. 5, pp. 1–26, 2020.

L. Lilburne, J. Watt, and K. Vincent, “A prototype DSS to evaluate irrigation management plans,” Comput. Electron. Agric., vol. 21, no. 3, pp. 195–205, 1998.

R. González Perea, E. Camacho Poyato, P. Montesinos, and J. A. Rodríguez Díaz, “Prediction of irrigation event occurrence at farm level using optimal decision trees,” Comput. Electron. Agric., vol. 157, no. June 2018, pp. 173–180, 2019.

A. Vitianingsih, A. Choiron, D. Cahyono, A. Umam, and S. Suyanto, “Spatial data modeling on gis for classification of measles-prone region using multiple attribute decision making,” Int. J. Intell. Eng. Syst., vol. 12, no. 3, pp. 97–107, 2019.

A. V. Vitianingsih, D. Cahyono, and A. Choiron, “Analysis and design of web-geographic information system for tropical diseases-prone areas: a case study of East Java Province, Indonesia,” in 2017 4th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), 2017, pp. 255–260.

A. V. Vitianingsih, I. Wisnubhadra, S. S. K. Baharin, R. Marco, and A. L. Maukar, “Classification of pertussis vulnerable area with location analytics using multiple attribute decision making,” Int. J. Innov. Comput. Inf. Control, vol. 16, no. 6, pp. 1943–1957, 2020.

A. V. Vitianingsih and D. Cahyono, “Geographical information system for mapping road using multi-attribute utility method,” in International Conference on Science and Technology-Computer (ICST), 2016, pp. 0–4.

G. Sharma, R. Bhargava, and M. Mathuria, “Decision tree analysis on j48 algorithm,” Int. J. Adv. Res. inComputer Sci. Softw. Eng., vol. 3, no. 6, pp. 1114–1119, 2013.

A. A. Aprilia Lestari, “Increasing accuracy of c4.5 algorithm using information gain ratio and adaboost for classification of chronic kidney disease,” J. Soft Comput. Explor., vol. 1, no. 1, pp. 32–38, 2020.

M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks,” Inf. Process. Manag., vol. 45, no. 4, pp. 427–437, 2009.

W. Song and H. Li, “A new method for acquiring long-term high-precision spatial data on rural settlements,” MethodsX, vol. 8, no. 101249, pp. 1–7, 2021.

G. M. Foody, “Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification,” Remote Sens. Environ., vol. 239, pp. 1-18, Mar. 2020.




DOI: http://dx.doi.org/10.33021/icsecc.v1i1.4159

Refbacks

  • There are currently no refbacks.



President University Press

Lembaga Riset dan Pengabdian Masyarakat

President University

Jalan Ki Hajar Dewantara, Mekarmukti, Bekasi

Jawa Barat, Indonesia 17530