Compressive Strength of Concrete with Malang Sand as Fine Aggregate Substitute
Abstract
Malang sand has small and rough grains with a sharp surface, it can easily absorb water and adhere to cement. It is very suitable for use as fine aggregate in concrete to improve the quality and durability of concrete. As sand from a volcano, Malang sand has similar characteristics to sand from cold lava resulting from volcanic eruptions. In another study, concrete with sand from cold lava of Sinabung volcano was reported to have the highest compressive strength in a mixture variation of 60-70% of Sinabung sand at the age of 14 days. This study focuses on investigating the compressive strength of concrete with the addition of Malang sand as partly replacement of 50-70% of the fine aggregate material. The concrete design method uses practical guidelines for designing concrete mixes according to Indonesian standard (SNI), and for testing the compressive strength of concrete using ASTM C-39. The percentage of sand used in this study is 50%, 60%, and 70% as a substitute for fine aggregate with a concrete age of 28 days. Based on the study results, the maximum average compressive strength is achieved for the concrete with Malang sand of 70% (MSC 70%) with a compressive strength of 31.89 MPa or an increase 4.32% compared to normal concrete. In this study indicated that the trend of compressive strength is increase with the increase of Malang sand content in the concrete.
Keywords
Full Text:
PDFReferences
H. Du and K. H. Tan, “Properties of High-Volume Glass Powder Concrete,” Cement and Concrete Composites, vol. 75, pp. 22–29, 2017.
I. Bali, J. Widjajakusuma, G. P. Ng, and R. Tjahjono, “High Early Strength Foamed Concrete Design for Structural Precast Concrete,” IOP Conference Series: Earth and Environmental Science, vol. 1195 (012022), pp.1-8, 2023.
A. P. Bayuseno, S. A. Widyanto, and J. Juwantono, “Sintesis Semen Geopolimer Berbahan Dasar Abu Vulkanik dari Erupsi Gunung Merapi,” Rotasi, vol. 12, no. 4, 2010. (In Indonesian)
J. Widjajakusuma, I. Bali, G. P. Ng, and K. A. Wibowo, “An Experimental Study on the Mechanical Properties of Low-Aluminum and Rich-Iron-Calcium Fly Ash-Based Geopolymer Concrete,” Advances in Technology Innovation, vol. 7, no. 4, pp. 295-302, 2022.
W. Kushartomo, I. Bali, and B. Sulaiman, “Mechanical Behavior of Reactive Powder Concrete with Glass Powder Substitute,” Procedia Engineering, vol. 125, pp. 617-622, 2015.
I. Bali, W. Kushartomo, and Jonathan, “Effect of In-Situ Curing on Compressive Strength of Reactive Powder Concrete,” MATEC Web of Conferences, vol. 67 (03013), pp. 1-6, 2016.
I. Bali and W. Kurnia, “The Curing Method Influence on Mechanical Behavior of Reactive Powder Concrete,” International Journal on Advanced Science, Engineering and Information Technology, vol. 8, no. 5, pp. 1976-1983, 2018. [Online]. Available: http://dx.doi.org/10.18517/ijaseit.8.5.4197.
N. Hanafiah, Pengaruh Penambahan Bubuk Kaca sebagai Bahan Pengganti Sebagian Semen dengan Variasi 2%, 4%, 6% dan 8% terhadap Kuat Tekan dan Nilai Slump, Teknik Sipil, Universitas Muhammadiyah Yogyakarta, Yogyakarta, 2011. (In Indonesian)
I. Bali and A. Prakoso, “Beton Abu Sekam Padi sebagai Alternatif Bahan Konstruksi,” Jurnal Sains dan Teknologi EMAS, vol. 12, no. 29, pp. 75-81, 2002. (In Indonesian)
I. Bali and F. Sitorus, “Merapi Volcanic Ash as an Eco-Material of Concrete Filler,” The 8th International Symposium on Lowland Technology, Bali, Indonesia, 2012.
I. Bali and O. Sitorus, “The Effect of Cold Lava Aggregate as a Filler Material of Concrete,” The 3rd International Conference of European Asian Civil Engineering Forum (EACEF), Yogyakarta, Indonesia, 2011.
T. T. C. P. Bungalolon and I. Bali, “Compressive Strength of Concrete Containing Merapi Cold Lava Sand,” PRESUNIVE Civil Engineering Journal, vol. 2, no. 1, pp. 38-44, April 2024.
B. P. Nugraha, E. T. Sudjatmiko, and I. Bali, “Compressive Strength of Concrete Containing Recycled Glass Powder,” PRESUNIVE Civil Engineering Journal, vol. 1, no. 1, pp. 8-12, April 2023.
R. H. Geovenerdy, I. Bali, and E. T. Sudjatmiko, “The Effect of Steam Curing on the Early Compressive Strength of Glass Powder Concrete,” PRESUNIVE Civil Engineering Journal, vol. 1, no. 2, pp. 48-53, October 2023.
I. M. Tatanka, I. Bali, and E. Sudjatmiko, “Mechanical Properties of Concrete with Recycled Bottle Glass Powder Substitute,” PRESUNIVE Civil Engineering Journal, vol. 2, no. 1, pp. 1-7, April 2024.
S. Choiriyah and D. Pertiwi, “Kuat Tekan Beton dengan Menggunakan Pasir Gunung Merapi Ditinjau dari Manajemen Kwalitas,” Seminar Nasional Sains dan Teknologi Terapan IV, 2016. (In Indonesian)
Lasino, B. Sugiharto, and D. Cahyadi, “Pemanfaatan Pasir dan Debu Merapi sebagai Bahan Konstruksi dalam Mendukung Pembangunan Infrastruktur dan Meningkatkan Nilai Guna Lahar Vulkanik,” Prosiding PPI Standardisasi, 2011. (In Indonesian)
D. Pertiwi, B. Wibowo, E. Kasiati, Triaswati, and A. G. Sabban, “Perbandingan Penggunaan Pasir Lumajang dengan Pasir Merapi terhadap Kuat Tekan Beton,” Jurnal APLIKASI, vol. 9, no. 2, 2011. (In Indonesian)
Sudaryo and Sutjipto, “Identifikasi dan Penentuan Logam pada Tanah Vulkanik di Daerah Cangkringan Kabupaten Sleman dengan Metode Analisis Aktivasi Neutron Cepat,” Seminar Nasional V SDM Teknologi Nuklir, 2009. (In Indonesian)
R. D. Susanti, A. Waruwu, D. Endriani, and I. Lesmana, “Potensi Penggunaan Pasir Lahar Dingin Gunung Sinabung sebagai Campuran Beton,” Techno, vol. 23, no. 2, 2022. (In Indonesian)
C. M. Riley, W. I. Rose, and G. J. S. Bluth, “Quantitative Shape Measurements of Distal Volcanic Ash,” Journal of Geophysical Research, vol. 108, no. B10, 2504, 2003. doi:10.1029/2001JB000818
D. Ramadhanty, K. A. Reksatama, and E. Kurniati, “Sintesa dan Karakteristik Adsorben dari Abu Vulkanik,” Journal of Chemical and Process Engineering, vol. 2, no. 2, pp. 52-56, 2020. (In Indonesian)
American National Standards Institute, Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM C-39, USA: Annual Books of ASTM, 1993.
Badan Standardisasi Nasional, Persyaratan Beton Struktural untuk Bangunan Gedung, SNI 2847:2013, Jakarta, 2013. (In Indonesian)
Badan Standardisasi Nasional, Tata Cara Pembuatan Rencana Campuran Beton Normal, SNI 03-2834-2000, Jakarta, 2000. (In Indonesian)
Badan Standardisasi Nasional, Spesifikasi Bahan Bangunan Bagian A (Bahan Bangunan Bukan Logam), SK. SNI S-04-1989-F, Bandung: Lembaga Penyelidikan Masalah Bangunan, 1989. (In Indonesian)
DOI: http://dx.doi.org/10.33021/pcej.v2i2.5463
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Muhammad Iqbal Paramatatya Satyawan Santoso, Ika Bali
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
President University Press
Lembaga Riset dan Pengabdian Masyarakat
President University
Jalan Ki Hajar Dewantara, Mekarmukti, Bekasi
Jawa Barat, Indonesia 17530
______________________________________________
INDEXED BY: