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Abstract  

This study deals with analysis of structures using mixed Eulerian-Lagrangian description. Apart from generally 

used Lagrangian description which uses initial configuration as reference, the newly proposed uses one of actual 

configuration as reference. Therefore, the total displacement is decomposed into two portions, i.e., the portion 

covering displacement from initial into referential configuration called Eulerian displacement, and the portion 

covering displacement from referential configuration into current configuration called Lagrangian displacement. The 

new technique is suitable to be applied to several classes of structures such as frictional contact and tensile structures. 

Eulerian displacement is used to represent relative displacements between material points paired in a nodal point in 

which slip mode occurs, while Lagrangian displacement is used to represent mutual displacement of material points 

paired in a nodal point in which stick mode occurs. The method was applied to certain contact problems, and the 

results obtained agreed fairly well with existing results found in references. 
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1. Introduction  

Structural analysis is carried out by describing physical process with respect to a chosen referential configuration. The 

referential configuration chosen may be undeformed configuration or deformed configuration. In infinitesimal displacement, 

the undeformed configuration is usually chosen as reference, even though deformed configuration may be chosen as reference. 

The difference would be negligible since undeformed and deformed configurations differ only to an infinitesimal degree. As 

an example, if a bar with length 100 cm is stretched so as to elongate 1 cm, then the strain is 1 cm / 100 cm = 0.0100 if 

undeformed configuration is used as reference, and the strain is 1 cm / 101 cm = 0.0099 if deformed configuration is used as 

reference. But if the elongation is 50 cm, then the strain is 50 cm / 100 cm = 0.5000 if undeformed configuration is used as 

reference, and the strain is 50 cm / 150 cm = 0.3333 if deformed configuration is used as reference.  

This concludes that for finitesimal displacement, the strain would be different if different description is used, even though 

the two strains describe the same deformation. The one that uses undeformed configuration as reference is referred to as 

Lagrangian description, and the one that uses deformed configuration as reference is referred to as Eularian description. An 

approach that uses a special configuration as reference called mixed Lagrangian-Eulerian description is proposed in this study, 

along with its examples of application. 

2. The Mixed Eulerian–Lagrangian Description 

Due to external loads (body force and surface traction) a system initially assumed undeformed configuration denoted as 
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𝑉𝑡eventually assumed current configuration 
tv  as shown in Fig. 1. A special configuration is chosen to be reference. At any 

time t
 
a location 

r
x is associated with a single particle identified by its position vectors 

t
X and  

t
x . in this model, 

t
X and  

t
x are functions of time and 

r
x , the only independent spatial variable. Assume that one-to-one mappings exist such that  
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Fig. 1. Eulerian-Lagrangian kinematic model 

The associated displacement vector is  
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The components of the Green strain tensor corresponding to the total deformation are defined by   
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2
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in which jiij xxJ = / are Jacobian components of the total deformation. It is convenient to decompose ijJ
 
into Lagrangian 

and Eulerian parts, 𝐽𝑖𝑘 and 𝐽�̅�𝑘 such that                              

                                                                                    𝐽𝑖𝑗 = 𝐽𝑖𝑘  𝐽�̅�𝑗                                                            (4) 

  

in which  

                                                                    𝐽𝑖𝑘 =
𝜕𝑥𝑖

𝜕𝑥𝑘
𝑟  ;  𝐽�̅�𝑗 =

𝜕𝑥𝑘
𝑟

𝜕𝑋𝑗
= (𝐽�̅�𝑗)−1                                               (5) 

If 𝐽�̅�𝑗 is constant in time, the conventional Lagrangian description is obtained. A pure Eulerian formulation results if  𝐽𝑖𝑘 is 

constant in time.  

 To formulate equilibrium condition, an admissible virtual field denoted by 𝛿𝑢 is imposed on the current configuration. 

The principle of virtual displacement requires that  

                                                ∫ 𝜏𝑖𝑗
𝑡 𝜕𝛿𝑢𝑖

𝜕𝑥𝑗
𝑡 𝑑𝑣𝑡 = ∫ 𝜕𝑢𝑘𝜌𝑡𝑏𝑘

𝑡 𝑑𝑣𝑡 + ∫ 𝜕𝑢𝑘𝜌𝑘
𝑡 𝑑𝑎𝑡

𝑎𝑝
𝑡𝑣𝑡𝑣𝑡                                 (6) 

 

The virtual work expression in the reference configuration is 

 

                                           ∫ 𝑊2
𝑡𝑑𝑣𝑟 = ∫ 𝜕𝑢𝑘𝜌0𝑏𝑘

𝑡  𝐽�̅�𝑑𝑣𝑟 + ∫ 𝜕𝑢𝑘𝜌𝑘
𝑡  (𝜅𝑎)𝑡𝑑𝑎𝑟

𝑎𝑝
𝑟𝑣𝑟𝑣𝑟                                    (7) 
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where 𝑊2
𝑡 is the virtual strain energy density measured in the reference configuration and is given by 

 

                                                                               𝑊2
𝑡 = 𝛿𝑢𝑖,𝑠𝐽�̿�𝑙

𝑡 𝐽𝑖𝑘
𝑡 𝑆𝑘𝑙

𝑡 𝐽�̅�                                            (8) 

 

in which the comma between subscripts denotes differentiation with respect to the reference coordinates. The stiffness 

equations obtained from Eq. (6) are generally nonlinear the incremental formulations which are used to derive linearized 

stiffness equation are given in the following discussion. 

3. Incremental Formulations 

An incremental model of the Eulerian-Lagrangian descriptions (ELD) is depicted in Fig. 2. The positions of the material 

pasticles associated with a specific references location 𝑥𝑟 at time 𝑡 + 𝛥𝑡 are given by  

                                                   𝑋𝑡+𝛥𝑡 = 𝑋𝑡 + 𝛥𝑋(𝑥𝑟 , 𝛥𝑡)  ; 𝑥𝑡+𝛥𝑡 = 𝑥𝑡 + 𝛥𝑥(𝑥𝑟 , 𝛥𝑡)                                     (9) 

 

The increments 𝛥𝑋 and 𝛥𝑥 are treated as generalized displacements. The concept of Eulerian and Langrangian displacement 

components 𝑢 and �̂� is introduced,  

                                                                               𝑢 = − 𝛥𝑋  ;  �̂� = 𝛥𝑥                                                              (10) 

 

Fig. 2. Incremental deformation model 

such that the total incremental displacement vector is 

                                                                                     𝛥𝑢 = 𝛥𝑥 − 𝛥𝑋 = �̂� + 𝑢                                             (11)  

 

The incremental displacements produce corresponding changes in the Jacobian, strain and stress components. After truncating 

terms that are quadratic in the incremental displacements, a linearized equilibrium condition in the following form is obtained. 

                     ∫ [𝑊2
𝑡 + 𝛥𝐿𝑊2]𝑑𝑣𝑟 = ∫ 𝜕𝑢𝑘𝜌0𝑏𝑘

𝑡+𝛥𝑡  [𝐽�̅� + 𝛥𝐿𝐽]̅𝑑𝑣𝑟
𝑣𝑟𝑣𝑟 + ∫ 𝜕𝑢𝑘𝜌𝑘

𝑡+𝛥𝑡  [(𝜅𝑎)𝑡 + 𝛥𝑙(𝜅𝑎)]𝑑𝑎𝑟
𝑎𝑝

𝑟              (12) 

A complete derivation of the incremental formulation of mixed Eulerian-Lagrangian description may be found elsewhere [1]. 
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4. Incremental Formulations in Finite Element 

A useful form of the Eulerian-Langrarian description based on isoparametric finite element model is shown in Fig. 3 [1]. 

The parent element geometry is selected as the reference configuration for each element, and the element natural coordinate 

system is chosen to be the reference coordinate system. This requires that the reference configuration and coordinate system 

be defined independently for each element. The initial and current configuration coordinate and the incremental and 

isoparametric element are then given by 

                          𝑋𝑖
𝑡 = ℎ𝛼𝑋𝑖𝛼

𝑡  ;  𝑥𝑖
𝑡 = ℎ𝛼𝑥𝑖𝛼

𝑡  ;  𝛥𝑋𝑖 = ℎ𝛼𝛥𝑋𝑖𝛼  ;  𝛥𝑥𝑖 = ℎ𝛼𝛥𝑥𝑖𝛼 ;  𝛿𝑢𝑖 = ℎ𝛼𝛿𝑢𝑖𝛼                           (13) 

 

in which ℎ𝛼(𝑥𝑟) is the shape function associated with node 𝛼. The system of equilibrium equations given by Eq. (12) are 

written in partitioned form as follows.  

                                                   [𝐾𝛿𝑥  𝐾𝛿𝑋  ]  {
𝛥𝑥
𝛥𝑋

} = {𝛥𝑅𝑥}                                                              (14) 

 

 

 
 

Fig. 3.  Isoparametric element model of ELD 

  

5. Examples of Applications 

The Eulerian-Langrarian description may be applied to several engineering problems. In this case, the description is 

applied to contact problems shown in Fig. 4. Several methods for modelling contact problems are available, such as the use of 

constraint function as suggested by Bathe and Bouzinov [2]. The use of Eulerian-Lagrangian displacement in modelling found 

its interesting application to contact problems since the slip mode may be modeled by the use of Eulerian displacement part. 

The model used herein is the model suggested by Coulomb [3]. Incremental contact problem is depicted in Fig. 4, and the use 

of mixed Eulerian-Lagrangian displacement model is depicted in Fig. 5. 
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Fig. 4. Incremental Eulerian model on the contact surfaces 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Kinematic model for a contact node pair 

 

 

Consider a contact problem between two bodies, in which there exist normal contact stress denoted by 𝑝𝑛  and tangential 

stress 𝑝𝑡. Depending on the values of contact stresses, there may exist three kinds of contact mode, i.e., separation, slip and 

stick modest. In separation mode, the stresses are  

                                                                                  𝑝𝑛 = 0 ;    𝑝𝑡 = 0                                                (15) 

whereas in stick mode,  

                                                                 𝑝𝑛 < 0 ;    ‖𝑝𝑡‖ ≤ 𝑓 ;     𝑎𝑛𝑑 �̇�𝑛 = �̇�𝑡 = 0                                        (16) 

 

in which 𝑓 is the allowable friction stress at contact surface, �̇�𝑛 and �̇�𝑡 represent relative velocity between contacting bodies 

in normal and tangential directions. In slip mode, it has  

                                                                 𝑝𝑛 < 0 ;    𝑝𝑡 = −𝑓
�̇�𝑡

‖�̇�𝑡‖
;     𝑎𝑛𝑑 �̇�𝑛 = 0                                (17) 
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Algorithm in the analysis of contact problem is shown in Fig. 6. The chains in contact mode is depicted in Fig. 7. In the 

following, several examples are presented, i.e., an elastic layer resting on a rigid foundation and an elastic resting on a rigid 

foundation subjected to a cyclic line load. The analysis may be cast in finite element formulation as done by Hirai et al [4].  

 

 

 

Fig. 6 Flow chart of frictional contact algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Decision chart for updating element contact modes 
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2.1   An elastic layer resting on a rigid foundation. 

A plane strain contact problem involving an elastic plate and a rigid foundation is depicted in Fig. 8. This problem was 

investigated previously by Civelek and Erdogan [5] and Gecit [6]. The plate is subjected to a downward distributed load 

denoted by 𝑝0 and a line load 𝑃 = 𝜆𝑝0ℎ. In this analysis, proportional loading case is assumed. Due to symmetry and the local 

influence of the line load on the structure, only the portion of the structure shown in Fig. 8 is considered. The entire initial 

contact surface between the plate and the foundation is used as the candidate contact surface. 

Both frictionless and frictional cases are considered. Normalized contact stress distributions for the frictionless case with 

several values of 𝜆 are shown in Fig. 9. In each case a separate analysis was performed and the full load was applied in a single 

step. Contact a long the entire candidate surface is predicted for lower values of 𝜆. A separation region starts to develop below 

the line load at 𝜆 = 1.088. The determination of the contact zone topology requires relatively few iterations. The precise 

locations of the transition contours are determined using a small number of additional iterations. as an example, for 𝜆 = 2.0, 

the analysis requires four iterations to determine the contact zone topology and seven iteration to adaptively locate the precise 

transition locations.       

 
Fig. 8  An elastic plate resting on a rigid foundation 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 9 Normalized contact stressess, frictionless case 
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Next, frictional case is considered. The normalized contact stress distribution are shown in Fig. 10. For larger values of 

𝜆 a separation zone develops below the line load. Immediatly outside the separation region is a zone of slip, and the remainder 

of the contact surface sticks. the frictional stresses cause bending deformations which reduce the extend of separate region. 

The frictional solution requires more iterations than the frictional case. For example, for 𝜆 = 2.0, the solution requires eight 

iterations to determine the contact zone topology, compared to four in frictionless case, and twelve iterations to precisely locate 

the transition contour (compared to seven iterations in the frictionless case). 

 

 

 

 

 

 

 

 

 

Fig. 10 Normalized contact stressess, frictional case 

2.2   An elastic layer resting on a rigid foundation subjected to a cyclic line load. 

The structure in the previous section is reconsidered with a cyclic variation of the line load 𝑃. An incremental version of 

the adaptive procedure is used to incorporate history-dependent effects. A refined finite element mesh is used in anticipation 

of the contact zone geometries for the loading and unloading paths. The line load 𝑃 is specified by varying the parameter 𝜆 

between 1.2 and 2.0 in increments of 0.10. The distributed load is held constant through the analysis. The solution in section 

5.1 for 𝜆 = 1.2 is assumed as the initial condition for the analysis. The contact zone topology and the initial location of the 

transition contours are determined from this solution. 

Normalized stress ditributions for the frictionless case and selected values of 𝜆 are shown in Fig. 11, Fig. 12 and Fig. 13. 

Comparizon with Fig. 8 indicates that the computed response is essentially independent of the load history, as expected for the 

frictional case.  

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 11 Normalized contact stress, frictionless case, 𝜆 = 1.2 



PRESUNIVE Civil Engineering Journal, vol. 1, no. 2, October 2023, pp. 37-47 

 

45 

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

Fig. 12 Normalized contact stress, frictionless case, 𝜆 = 1.5 
 
 
 
  
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

 

 

Fig. 13 Normalized contact stress, frictionless case, 𝜆 = 2.0 
 
 

Normalized contact stress distribution for the frictional case are plotted in Fig. 14, Fig. 15 and Fig. 16 for 𝜆 = 1.2 , 𝜆 =

1.5, and 𝜆 = 2.0, repectively. Results from Fig. 12 are also shown for comparison. The results indicated history-dependent 

behavior for frictional case during the loading phase, and support the generality of the solutions persented in Fig. 12. However, 

the structure exhibits very different behavior during the unloading phase. Immediately after the line load intensity begins to 

decrease, a reduced slip zone develop and the region adjacent to the separation zone. This effect can be seen in Fig. 15 where 

the contact stress distribution are compared for 𝜆 = 1.5  during the loading and unloading phases. Note that the slip 

displacements and friction stresses undergo a reversal in the loading phase. The remainder of the contact surface exhibits stick 

behaviour. This example clearly demonstrates that frictional contact is generally a history-dependent process. 
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Fig. 14 Normalized contact stress, frictional case, 𝜆 = 1.2 

 

 
  
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

 

Fig. 15  Normalized contact stress, frictional case, 𝜆 = 1.5 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 16  Normalized contact stress, frictional case, 𝜆 = 2.0 
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6. Conclusions 

This study has described the development of novel finite element algorithms for frictional contact problems. These 

algorithms make use of a new topological description of the frictional contact problem and new computational techniques for 

computing surface tractions and performing adaptive finite element analysis. The mixed Eulerian-Langrangian kinematic 

description places a central role in the contact algorithm. The effectiveness of the algorithms has been demonstrated for 

example problem involving the Coulomb friction law, curved contact surfaces, large deformation un-cycling loading. 

 A frictional contact algorithm based on a heuristic approach was presented in the study. The algorithm is capable of 

determining contact zone topology and geometry within the resolution of the element mesh. The effectiveness of the algorithm 

has been demonstrated in examples involving receding contact problem.  
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