Prediction of Loan Status Using Logistics Regression Model and Naïve Bayes Classifier
Abstract
Keywords
Full Text:
PDFReferences
Hermanto, “Faktor - faktor Kredit Macet pada PD. BPR BKK Ungaran Kabupaten Semarang,” Universitas Semarang, 2006.
A. Astusti, “Analisis Kredit Macet pada PT,BPR Restu Klaten Makmur,” Universitas Sebelas Maret Surakarta, 2009.
Y. B. Ernest, “Predicting Microfinance Credit Default,” Kwame Nkrumah university, 2012.
S. L. B. Ginting, J. Adler, Y. R. Ginting, and A. H. Kurniadi, “The Development of Bank Application for Debtors Selection by Using Naïve Bayes Classifier Technique,” IOP Conf. Ser. Mater. Sci. Eng., vol. 407, no. 1, 2018, doi:
1088/1757-899X/407/1/012177.
T. Sunitha, M. Chandravallika, M. Ranganayak, G. Suma, and T. V. S. Jagadeesh, “Predicting the Loan Status using Logistic Regression and Binary Tree,” no. Icicnis, pp. 708–715, 2020.
S. Tabagari, “Credit Scoring by Logistics Rgression,” Tartu University, 2015.
U. Sekaran and R. Bougie, Research Methods for Business: A Skill- Building Approach, 6th editio. New York: Wiley, 2013.
D. W. Hosmer and S. Lemeshow, Applied Logistik Regression, 2nd editio. Jakarta: John Wiley & Son, 2000.
A. Agresti, An Introduction to Categorical Data Analysis Second Edition, Second. Wiley, 2007.
Erene Fajrila, “Perbandingan klasifikasi ketepatan waktu kelulusan mahasiswa menggunakan regresi logistik biner dan naïve bayes classifier,” UNIVERSITAS ISLAM INDONESIA YOGYAKARTA, 2018.
E. Prasetyo, Data Mining Konsep dan Aplikasi Menggunakan MATLAB, 1st ed. Yogyakarta: CV Andi Offset, 2012.
A. Jana, “Credit Risk Train Data,” Github, 2018. https://github.com/anup-jana/R-Machine-Learning/blob/master/R Scripts/Datasets/Credit_Risk_Train_data.csv.
DOI: http://dx.doi.org/10.33021/jafrm.v1i2.3968
DOI (PDF): http://dx.doi.org/10.33021/jafrm.v1i2.3968.g1346
Refbacks
- There are currently no refbacks.