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Abstract— Mortality is the state where all signs of life permanently, which can occur at any time after a person is 

born. Mortality data can be presented in the form of table called a mortality table, which is a table that provides an 

overview of the life of a population group starting from births at the same time and life of a population group that 

starts from birth at the same time and slowly decreases due to death. In actuarial studies, this table has a role as 

one of the important factors to determine the amount of premium costs and premium reserves, especially life 

insurance. Therefore, it is necessary for continuity in conducting research related to mortality tables. This research 

aims to forecast the death rate and the probability of death of the population in the future using the Lee-Carter 

model, which is a mortality forecasting model that combines a demographic model with a time series model. This 

mortality model shows that the logarithm of mortality rate is the sum of the parameters of the average general 

mortality rate by age and the multiplication of the trend parameter of mortality rate changes by age with the 

mortality index parameter. Forecasting process begins with estimating the parameters of the average mortality rate 

and the trend of mortality rate changes influenced by the mortality index parameter using the singular value 

decomposition (SVD) method. After that, the mortality index mortality index is forecasted using the ARIMA 

model and the results of this forecast are then reinserted into the Lee-Carter model to obtain death rate prediction. 

Based on the results of the mortality rate prediction, it can then be the prediction of the probability of death for the 

mortality table. The result of this research is a mortality table that contains predictions of the probability of death 

of the Indonesian population for both male and female gender using the Lee-Carter model from the year 2022 

2026. Based on these results, it is concluded that the value of the probability of death for each year increases with 

increasing age.  
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I. INTRODUCTION  

Mortality is a statistic that reflects the number of individuals in a population who die within a specific period 

[1]. Generally, mortality is presented in the form of a mortality table, also known as a life table, which represents 

mortality data structure in probability format. Additionally, mortality succinctly illustrates the concept that the 

gradual impact of mortality reducing population numbers can be explained through tabulation [2]. 

Mortality tables play a crucial role in demographic, epidemiological, and actuarial studies. In demography, 

mortality tables are often used for descriptive purposes to compare mortality rates across different ages, genders, 

races, times, and locations. In epidemiology, mortality tables are employed to identify risk factors associated with 

morbidity and mortality rates [3]. In actuarial studies, mortality tables are essential for determining premium costs 

and premium reserves, particularly for life insurance. Moreover, mortality rates can be used as a benchmark for 

assessing public health and welfare, as well as for guiding government policy and evaluating initiatives, such as 

health service development, schools, public facilities, and other necessary infrastructures aimed at reducing 

mortality rates. Countries with better development progress, such as improved health, education, and higher 

economic levels, generally exhibit lower mortality rates [4]. 

Mortality tables can be constructed using approaches from the laws of mortality, namely deterministic 

mortality laws and stochastic mortality laws. Deterministic mortality laws were developed earlier than stochastic 

methods and tend to treat death rates as fixed values at each point in time. Some of the most notable deterministic 

laws in history include those by De Moivre, Gompertz, Makeham, and Weibull [5]. On the other hand, stochastic 
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mortality laws do not disregard the uncertainty element in mortality, treating it as a random variable. One 

prominent model under stochastic mortality laws is the Lee-Carter model. 

The Lee-Carter model is widely recognized for its simplicity and effectiveness in forecasting mortality rates. 

It uses only three parameters, which makes it computationally efficient and easy to interpret. This model has been 

successfully applied in various countries, demonstrating its robustness and versatility. However, it assumes 

homoskedasticity of errors, which is unrealistic as the variance of mortality rates often increases with age. Another 

limitation is its assumption that the sensitivity of log mortality rates at each age remains constant, neglecting 

potential age-time interactions. Extensions like the Poisson Lee-Carter model address some of these issues by not 

imposing homoskedasticity and ensuring the total actual deaths match the total expected deaths. Nevertheless, 

these extensions can be computationally complex and may not always converge. Furthermore, incorporating cohort 

effects, as in the age-period-cohort Lee-Carter model, can improve performance but adds complexity and potential 

identifiability issues. The two-step estimation process in the Lee-Carter model can also lead to inconsistent 

estimators, particularly when dealing with non-stationary time series. Despite these challenges, the Lee-Carter 

model remains a cornerstone in mortality forecasting due to its balance of simplicity and effectiveness [6]. 

The Lee-Carter model was first introduced by Ronald D. Lee and Lawrence Carter in 1992 in their article 

"Modeling and Forecasting U.S. Mortality Rates" [7]. The Lee-Carter model is a forecasting model that combines 

demographic modeling with time series statistical methods [1]. The initial application of the Lee-Carter model 

performed well in generating mortality data for the United States from 1933 to 1987. Since then, the Lee-Carter 

model has been widely applied in various countries to forecast population mortality rates. 

Based on previous research, it was found that mortality rate forecasts using the Lee-Carter model could be 

used to estimate mortality probabilities in life tables [1]. The study titled "Forecasting Malaysian Mortality Rates 

Using the Lee-Carter Model with Fitting Period Variants" concluded that the Lee-Carter model remains valid for 

mortality data forecasting [8]. Furthermore, other studies have also reported the successful application of the Lee-

Carter model for mortality rate forecasting in different countries and time periods, such as in Canada, Brazil, and 

Belgium [9]. 

In this study, the researchers will use the Lee-Carter model to forecast future mortality rates and probabilities 

for the Indonesian population. The data to be used comprises mortality probabilities for the Indonesian population 

by single age and gender from 1967 to 2021, sourced from the 2022 World Population Prospects report released 

by the United Nations, with forecasting age limited to up to 99 years. The objective of this study is to construct 

mortality tables containing forecasted mortality probabilities for the Indonesian population from 2022 to 2026 

using the Lee-Carter model. 

II. LITERATURE REVIEW 

A. Singular Value Decomposition (SVD) 

Singular value decomposition (SVD) is a matrix decomposition method that decomposes a matrix into three 

simpler matrices [10]. SVD factors an 𝑚 × 𝑛 matrix A into matrices 𝑼, ∑, 𝑽. 

𝑨 = 𝑼∑𝑽𝑻. (1) 

Explanation: 

𝑼 : an orthogonal matrix of dimensions m×m, referred to as the left singular vectors. 

∑ : a matrix of dimensions 𝑚 × 𝑛 where the main diagonal elements are the singular values of matrix 𝑨, 

and the other elements are 0. 

𝑽 : an orthogonal matrix of dimensions 𝑛 × 𝑛, referred to as the right singular vectors. 

Here is the algorithm of singular value decomposition method for matrix 𝑨 of size 𝑚 × 𝑛 with rank 𝑘: 

1. Left Singular Vector 

a. Form the matrix 𝑨𝑨𝑻. 

b. Calculate the eigenvalues of 𝜆1, 𝜆2, ⋯ , 𝜆𝑛 of 𝑨𝑨𝑻. 

c. Calculate the eigenvectors, namely 𝒖𝟏, 𝒖𝟐, ⋯ , 𝒖𝒎 which correspond to eigenvalues, namely 𝜆1, 𝜆2, ⋯ , 𝜆𝑛 

of 𝑨𝑨𝑻. 

�̂�𝑚 = 
𝑢𝑚

‖𝑢𝑚‖
, 

 
= 

𝑢𝑚

√𝑢1𝑚
2 +𝑢2𝑚

2 +⋯+𝑢𝑛𝑚
2

. 

d. Normalization of eigenvectors, namely  𝒖𝟏, 𝒖𝟐, ⋯ , 𝒖𝒎 by dividing each vector by its length (magnitude). 

e. The shape of the matrix 𝑼. 

𝑼 = [𝑢1 𝑢2 … 𝑢𝑘 | 𝑢𝑘+1 … 𝑢𝑚]. 
2. Singular Values 

a. Form the matrix 𝑨𝑻𝑨. 

b. Calculating the eigenvalues 𝜆1, 𝜆2, ⋯ , 𝜆𝑛 of 𝑨𝑻𝑨. 
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c. Calculate the singular values of matrix 𝑨𝑻𝑨 𝜎1, 𝜎2, ⋯ , 𝜎𝑛 with equation: 

𝜎𝑛 = √𝜆𝑛. 

d. The form of the matrix ∑, which is a matrix whose main diagonal contains the singular values of the matrix 

𝑨𝑻𝑨 and other values 0 assuming 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥  𝜆𝑛 so that 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑛. 

∑ =

[
 
 
 
 
 
𝜎1 0
0 𝜎2

… 0
… 0

⋮ ⋮
0 0

⋱ ⋮
… 𝜎𝑘

0𝑘×(𝑛−𝑘)

⬚
0(𝑚−𝑘)×𝑘

⬚
0(𝑚−𝑘)𝑥(𝑛−𝑘)]

 
 
 
 
 

. 

3. Right Singular Vector 

a. Calculate the eigenvectors 𝒗𝟏, 𝒗𝟐, ⋯ , 𝒗𝒎 that correspond to the eigenvalues 𝜆1, 𝜆2, ⋯ , 𝜆𝑛 of 𝑨𝑻𝑨. 

b. Normalize the eigenvectors 𝒗𝟏, 𝒗𝟐, ⋯ , 𝒗𝒎 by dividing each vector by its length (magnitude). 

�̂�𝑚 = 
𝑣𝑚

‖𝑣𝑚‖
, 

 = 
𝑣𝑚

√𝑣1𝑚
2 +𝑣2𝑚

2 +⋯+𝑣𝑛𝑚
2

. 

c. The matrix form 𝑽. 

𝑽 = [𝑣1 𝑣2 … 𝑣𝑘 | 𝑣𝑘+1 … 𝑣𝑚]. 
d. Transpose the matrix 𝑽. 

𝑽𝑻 =

[
 
 
 
 
 
 
 

𝑉1
𝑇

𝑉2
𝑇

⋮
𝑉𝑘

𝑇

____

𝑉𝑘+1
𝑇

⋮
𝑉𝑛

𝑇 ]
 
 
 
 
 
 
 

. 

B. Lee-Carter Model 

The Lee-Carter model is a model that was first introduced by Ronald D. Lee and Lawrence Carter in 1992 in 

the article Modeling and Forecasting the Time Series of U.S. Mortality [7]. This model is a mortality forecasting 

model that combines demographic models with time series statistical models [1]. The first application of the Lee-

Carter model was said to perform well in producing the output data of the United States mortality rate from 1933 

1987. Since then, the Lee-Carter model has been applied in many countries to forecast population mortality rates, 

namely Canada, Chile, Japan, Brazil, Austria, and Belgium. This model is widely used due to its simplicity, which 

only involves three parameters, but can forecast mortality rates well. 

The basic concept of the Lee-Carter model is a stochastic model that suggests a log bilinear form for central 

death rates (𝑚𝑥,𝑡) for age 𝑥 at time 𝑡 [9]. The parameters contained in the Lee-Carter model, namely the 𝑎𝑥 is 

parameter of the general average mortality rate by age 𝑥, 𝑏𝑥 is trend parameter of the change in mortality rate by 

age 𝑥, 𝑘𝑡 is mortality index parameter in year 𝑡. Here is the form Lee-Carter model equation: 

𝑚𝑥,𝑡 = 𝑒𝑎𝑥+𝑏𝑥𝑘𝑡+𝜀𝑥,𝑡, (2) 

or 

ln𝑚𝑥,𝑡 = 𝑎𝑥 + 𝑏𝑥𝑘𝑡 + 𝜀𝑥,𝑡. (3) 

where 𝑎𝑥, 𝑏𝑥, and 𝑘𝑡 are the parameters to be estimated and  𝜀𝑥.𝑡 is a set of random errors. The parameters in 

Equation (3) are not unique because they are invariant to transformation [11]. Suppose, the vectors 𝒂, 𝒃, and 𝒌 are 

one solution then for every c, 𝑎 –  𝑏𝑐, 𝑏, and 𝑘 +  𝑐 are also solutions. In addition, if 𝒂, 𝒃, and 𝒌 are a solution 

then 𝑎, 𝑏𝑐, 
𝑘

𝑐
 is also a solution. Therefore, to get the solution unique from the parameter estimation in Equation 

(3), parameter constraints are made, 
∑ 𝑏𝑥𝑥 = 1, (4) 

and 
∑ 𝑘𝑡𝑡 = 0. (5) 

 

1) Parameter Estimation 𝑎𝑥: Based on the Lee-Carter model in Equation (3), the equation for the error 

value 𝜀𝑥,𝑡 can be obtained as follows [1]: 

𝜀𝑥,𝑡 = ln𝑚𝑥,𝑡 − 𝑎𝑥 − 𝑏𝑥𝑘𝑡. 
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The value of 𝑎𝑥 is estimated by minimizing the error value 𝜀𝑥,𝑡 or ∑ 𝜀𝑥,𝑡
𝑇
𝑡=1 = 0 for a certain value of 𝑡 

so that it is obtained: 

∑𝜀𝑥,𝑡

𝑇

𝑡=1

 = ∑ (ln𝑚𝑥,𝑡 − 𝑎𝑥 − 𝑏𝑥𝑘𝑡)
𝑇
𝑡=1 , 

0 = ∑ (ln𝑚𝑥,𝑡 − 𝑎𝑥 − 𝑏𝑥𝑘𝑡)
𝑇
𝑡=1 , 

 = ∑ (ln𝑚𝑥,𝑡)
𝑇
𝑡=1 − ∑ (𝑎𝑥)

𝑇
𝑡=1 − ∑ (𝑏𝑥𝑘𝑡)

𝑇
𝑡=1 , 

 = ∑ (ln𝑚𝑥,𝑡)
𝑇
𝑡=1 − 𝑇𝑎𝑥 − 𝑏𝑥 ∑ (𝑘𝑡)

𝑇
𝑡=1 . 

Thus, 

𝑇𝑎𝑥 = ∑ (ln𝑚𝑥,𝑡)
𝑇
𝑡=1 − 𝑏𝑥 ∑ (𝑘𝑡)

𝑇
𝑡=1 , 

or 

𝑎𝑥 =
∑ (ln𝑚𝑥,𝑡)

𝑇
𝑡=1 − 𝑏𝑥 ∑ (𝑘𝑡)

𝑇
𝑡=1

𝑇
 (6) 

Parameter estimation 𝑎𝑥 as the average general mortality rate by age 𝑥 obtained by using parameter 

constraints according to Equation (5) so that: 

�̂�𝑥 = 
∑ (ln 𝑚𝑥,𝑡)

𝑇
𝑡=1 −𝑏𝑥∙0

𝑇
, 

 

 = 
∑ (ln 𝑚𝑥,𝑡)

𝑇
𝑡=1

𝑇
. (7) 

Description: 

𝑚𝑥,𝑡   : central death rate for age 𝑥 at time 𝑡. 
𝑇 : number of years. 

2) Parameter Estimation of 𝑏𝑥 and 𝑘𝑡: Parameter estimates of bx and kt are calculated using singular value 

decomposition (SVD) with the following steps [1]: 

1. Form a matrix 𝒁𝒙,𝒕 of size 𝑥 × 𝑡 to estimate the parameters bx and kt.  

𝒁𝒙,𝒕 = [

𝑧0,0 𝑧0,2

𝑧1,1 𝑧1,2

⋯ 𝑧0,𝑡

⋯ 𝑧1,𝑡

⋮ ⋮
𝑧𝑥,1 𝑧𝑥,2

⋱ ⋮
⋯ 𝑧𝑥,𝑡

]. 

The matrix 𝒁𝒙,𝒕 is 𝑏𝑥𝑘𝑡 with 𝑏𝑥𝑘𝑡 formed based on Equation (2) whose error value is assumed to 

be zero so that it is obtained: 

𝑏𝑥𝑘𝑡 = ln𝑚𝑥,𝑡 − 𝑎𝑥. 

Thus, the matrix 𝒁𝒙,𝒕 is obtained as follows: 

𝒁𝒙,𝒕 =

[
 
 
 
ln𝑚0,1 − 𝑎0 ln𝑚0,2 − 𝑎0

ln𝑚1,1 − 𝑎1 ln𝑚1,2 − 𝑎1

⋯ ln𝑚0,𝑡 − 𝑎0

⋯ ln𝑚1,𝑡 − 𝑎1

⋮ ⋮
ln𝑚𝑥,1 − 𝑎𝑥 ln𝑚𝑥,2 − 𝑎𝑥

⋱ ⋮
⋯ ln𝑚𝑥,𝑡 − 𝑎𝑥]

 
 
 
 (8) 

2. The matrix 𝒁𝒙,𝒕 is decomposed using SVD. 

𝒁𝒙,𝒕 = 𝑼𝚺𝑽𝑻. (9) 

Description: 

𝑼 : left singular vector. 

𝚺 : singular values. 

𝑽 : right singular vector. 

3. The estimation of 𝑏𝑥 is obtained from the first column of matrix 𝑼, i.e: 

�̂�𝑥 = (𝑢1,1, 𝑢2,1, ⋯ , 𝑢𝑥,1)𝑇. (10) 

Based on the parameter constraints in Equation (6) then: 

�̂�𝑥 = 
1

∑ 𝑢𝑥,1𝑥
(𝑢1,1, 𝑢2,1, ⋯ , 𝑢𝑥,1)𝑇. (11) 

where �̂�𝑥 is estimation of trend parameter of the change in mortality rate by age 𝑥. 

4. The estimation of 𝑘𝑡 is obtained from the multiplication of the first singular value with column 

first matrix 𝑽, that is: 

�̂�𝑡 = Σ1(𝑣1,1, 𝑣2,1, ⋯ , 𝑣𝑡,1). (12) 

Based on the parameter constraints in Equation (6) then: 

�̂�𝑡 = ∑ (𝑢𝑥,1)𝑥 ∙ Σ1 ∙ (𝑣1,1, 𝑣2,1, ⋯ , 𝑣𝑡,1). (13) 

where �̂�𝑡 is estimation of mortality index parameter in year 𝑡. 
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3) Estimated Probability of Death: Based on the calculation of the estimated death rate (𝑚𝑥,𝑡) using the 

Lee-Carter model, the estimated value of the probability of death (𝑞𝑥,𝑡) can also be calculated. The 

probability of death can be obtained by finding the relationship between the central death rates of a 

person aged 𝑥 in year 𝑡 and the probability of death of a person aged 𝑥 in year 𝑡. This relationship will 

be sought using linear interpolation. It is known that the equation for a person's death rate is: 

𝑚𝑥 =
𝑑𝑥

𝐿𝑥
, 

with 𝐿𝑥 is 𝐿𝑥 = ∫ 𝑙𝑥+𝑡  𝑑𝑡
1

0
 and 𝑑𝑥 is 𝑑𝑥 = 𝑞𝑥𝑙𝑥. 

In linear interpolation, assume the linear form of 𝑙𝑥+𝑡 for 0 ≤ 𝑡 ≤ 1 as 𝑎 + 𝑏𝑡. Thus, for 𝑡 = 0 then 

𝑙𝑥 = 𝑎 and for 𝑡 = 1 then 𝑙𝑥+1 = 𝑎 + 𝑏 thus obtained [12]: 

𝑏 = 𝑙𝑥+1 − 𝑎,  

 = 𝑙𝑥+1 − 𝑙𝑥 . (14) 

It is known that −𝑑𝑥 = 𝑙𝑥+1 − 𝑙𝑥, so that Equation (14) becomes: 

𝑏 = −𝑑𝑥 (15) 

From Equation (15), the following equation can be formed: 

𝑙𝑥+𝑡  = 𝑎 + 𝑏𝑡,  

 = 𝑙𝑥 + (−𝑑𝑥)𝑡,  

 = 𝑙𝑥 − 𝑡 ∙ 𝑑𝑥, (16) 

Thus, the value 𝐿𝑥 becomes: 

𝐿𝑥 = ∫ (𝑙𝑥 − 𝑡 ∙ 𝑑𝑥) 𝑑𝑡
1

0
,  

 = ∫ 𝑙𝑥 𝑑𝑡
1

0
− ∫ 𝑑𝑥 ∙ 𝑡 𝑑𝑡

1

0
,  

 = 𝑡𝑙𝑥|0
1 −

1

2
𝑑𝑥 ∙ 𝑡2|0

1,  

 = (𝑙𝑥 − 0) − (
1

2
𝑑𝑥 ∙ 12 − 0),  

 = 𝑙𝑥 −
1

2
𝑑𝑥 . (17) 

Based on Equation (17), the equation for the central death rates of person aged  𝑥 in Equation () 

becomes: 

𝑚𝑥 = 
𝑑𝑥

𝑙𝑥−
1

2
𝑑𝑥

,  

 
= 𝑙𝑥𝑞𝑥

𝑙𝑥−
1

2
𝑙𝑥𝑞𝑥

. (19) 

From Equation (19), the relationship between the death rate (𝑚𝑥) and the probability of death (𝑞𝑥) can 

be obtained, namely: 

𝑚𝑥 = 
𝑙𝑥𝑞𝑥

2𝑙𝑥−𝑙𝑥𝑞𝑥
2

,  

 = 
2𝑙𝑥𝑞𝑥

2𝑙𝑥−𝑙𝑥𝑞𝑥
,  

 = 
2𝑙𝑥𝑞𝑥

𝑙𝑥(2−𝑞𝑥)
,  

 = 
2𝑞𝑥

2−𝑞𝑥
. (20) 

or 

𝑞𝑥 =
2𝑚𝑥

2+𝑚𝑥
. (21) 

Thus, the equation to calculate the estimated value of the probability of death of a person aged 𝑥 in year 

𝑡 (𝑞𝑥,𝑡) is as follows: 

�̂�𝑥,𝑡 =
2�̂�𝑥,𝑡

2 + �̂�𝑥,𝑡

 (22) 

Description: 

�̂�𝑥,𝑡: estimated death rate of a person aged 𝑥 in year 𝑡. 

 

C. Autoregressive Moving Average 

Autoregressive Integrated Moving Average (ARIMA) is one of the forecasting methods introduced by 

George E. P. Box and Gwilym M. Jenkins. This model Autoregressive (AR), Moving Average (MA), and ARMA 

models, which are a combination of AR and MA processes, are used for forecasting with non-stationary data. In 

addition, these models are also generated using the Box-Jenkins method [13]. 
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The ARIMA model is an approach to building accurate forecasting models for the short term without 

considering independent variables, but only based on time series data. The general form is ARIMA (𝑝, 𝑑, 𝑞), where 

𝑝 states the order of the autoregressive (AR) element, 𝑑 is the order of the integrated (I) element, and 𝑞 of moving 

average (MA) order [14]. The AR model reflects that the value of the dependent variable is influenced by the value 

of the variable itself at the previous time, while the MA model explains that the value of the dependent variable is 

influenced by the residual value (error) in the past [15]. The ARIMA model equation is as follows: 

Φ𝑝(𝐵)𝐷𝑑𝑍𝑡 = 𝜇 + 𝜃𝑞(𝐵)𝑎𝑡. (23) 

The above equation can be written using the B (backshift) operator as: 

(1 − ∅1𝑌𝑡−1 − ⋯− ∅𝑝𝑌𝑡−𝑝)(1 − 𝐵)𝑑𝑌𝑡 = 𝑒𝑡 + 𝜃1𝑒𝑡−1 + ⋯+ 𝜃𝑝𝑒𝑝−𝑞 

where 𝑌𝑡 is the value of the variable at time 𝑡. 
Description:  

Φ𝑝 : the coefficient of the 𝑝𝑡ℎ autoregressive parameter. 

𝜃𝑞 : the coefficient of the 𝑞𝑡ℎ moving average parameter. 

𝐵 : backshift operator. 

𝐷 : differencing. 

𝜇 : constants. 

𝑎𝑡  : the remainder at the 𝑡𝑡ℎ time 

𝑝  : autoregressive degree. 

𝑑 : the level of the differencing process. 

𝑞 : degree moving average. 

In the forecasting process using the ARIMA model, there are several stages, namely stationarity test, ARIMA 

model identification, and ARIMA model evaluation. The time series data used must be stationary, so a stationarity 

test is required, both a stationarity test on the average and a stationarity test in variance. The identification of the 

ARIMA model is seen based on the ACF and PACF plots. Meanwhile, for ARIMA model evaluation, the best 

model is selected based on Akaike's Information Criterion (AIC) approaches. 

1) Stationarity Test: Time series data used in forecasting using the ARIMA method must be stationary, 

both in terms of mean and variance. Stationarity means that there is no change (constant) in the time 

series data. Stationary means that data fluctuations are around a constant mean value and the variance 

of these fluctuations remains constant over time [16]. 

Data stationary test on variance can be done using the Box-Cox assumption test. The results of the Box-

Cox assumption test using software assistance R Studio, it can be seen that based on the largest PPCC 

value, it is close to the value of nilai 𝜆 = 1 or not. If the largest PPCC value is not yet close to the value 

of nilai 𝜆 = 1 then it will be a transformation process is performed. The Box-Cox transformation or also 

known as the power transformation was introduced by Box and Cox in 1964. This transformation is not 

only useful for variance stationarity but also can often improve the approximation of the distribution to 

a normal distribution [17]. Box-Cox Transformation is the rank transformation on the response variable 

with 𝜆 is the estimated value transformation parameter and 𝑍𝑡 is the response variable Z at time t [18]. 

This power transformation only applies to positive data. If some data values are zero or negative, a 

positive constant can be added to all data values to make them positive before they are transformed [19]. 

The following are Box-Cox transformation table for commonly used 𝜆 values: 
Table 1. Box-Cox Transformation 

𝝀 Value Transformation Shape 

-1 
1

𝑍𝑡

 

-0.5 
1

√𝑍𝑡

 

0 ln 𝑍𝑡 

0.5 √𝑍𝑡 

1 𝑍𝑡 

Meanwhile, the process of testing the means is done using the Augmented Dickey Fuller test (ADF 

test). This stationarity test is based on the null hypothesis that the data is not stationary. Decision making 

using the ADF test is based on the p-value. The p-value is compared with the significance level value 

to determine whether or not a data is stationary. If the null hypothesis is accepted, which means that the 

data is not stationary, a differencing process needs to be carried out [20]. The differencing process is a 

calculation process by reducing the data value in a period with the data value in the previous data period 

[13]. The following is the hypothesis used in the ADF test: 

H0   : Data is not stationary. 
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H1   : Data is stationary. 

Significance : 𝛼(5%). 

Rejection Area : reject H0 if P-Value < 𝛼(0,05). 

2) ARIMA Model Identification: Identification of the time series model can be done after the data is 

stationary against variance and to the mean. For 𝑝 and 𝑞 orders, it can be done by looking at the ACF 

and PACF plots, while for 𝑑 orders, it can be seen from how many 𝑑 orders are there. differencing [21]. 

The following are the general properties of ACF and PACF plots for ARIMA models [17]: 
Table 2. ACF and PACF properties 

Model ACF PACF 

AR(𝑝) Goes to zero exponentially Cut-off after 𝑝-lag 

MA(𝑞) Cut-off after 𝑞-lag Goes to zero exponentially 

ARMA(𝑝, 𝑞), 𝑝 > 0 and 

𝑞 > 0 

Goes to zero exponentially after 

lag-𝑞 

Goes to zero exponentially after 

lag-𝑝 

 

3) Model Evaluation: ARIMA model evaluation is determined based on Akaike's Information Criterion 

(AIC) approaches. The AIC approach was introduced by Akaike in 1973 to assess the quality of a good 

model with information criteria [22]. Model selection is done by minimizing the criterion function 

defined as follows:  

𝐴𝐼𝐶 = −2 log(𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2𝑘. (24) 

where 𝑘 is the number of model parameters. The addition of 2𝑘 terms serves as a penalty function so 

that the selected model tends to be simpler, as well as for avoiding the selection of overly complex 

models with too many parameters. The main characteristic of AIC is its ability to evaluate the balance 

between the fit of the model to the data and the level of model complexity [23]. 

III. METHODOLOGY 

A. Data Type and Source 

The data used in this study is numerical or quantitative, consisting of numerical values. This data is sourced 

from the World Population Prospects 2022 report released by the United Nations. The study utilizes probability of 

death (𝑞𝑥) from the UN (United Nation) Indonesia Life Table by single age up to 99 years for both males and 

females, covering the period from 1967 to 2021. 

B. Variabels 

This study involves two variables: year and probability of death (𝑞𝑥) based on gender and single age. The 

time span used is 55 years, from 1967 to 2021, with single ages ranging from 0 to 99 years. These variables will 

be used to estimate the parameters of the Lee-Carter model, which include the parameter of the general average 

mortality rate by age 𝑥 (𝑎𝑥), the trend parameter of the change in mortality rate by age 𝑥 (𝑏𝑥), and the mortality 

index parameter in year 𝑡 (𝑘𝑡). 

C. Research Procedure 

The research procedure encompasses the steps used to collect data and solve the research problem. The 

procedure for this study is as follows: 

1. Collect mortality probability data. 

2. Calculate 𝑚𝑥,𝑡 values using Equation (20), then compute 𝑙𝑛 𝑚𝑥,𝑡. 

3. Estimate the parameter 𝑎𝑥 by minimizing the error using Equation (7). 

4. Form the matrix 𝒁𝒙,𝒕 using Equation (8). 

5. Estimate parameters 𝑏𝑥 and 𝑘𝑡 using singular value decomposition. The 𝑏𝑥 estimate is obtained from the 

column of the matrix 𝑼, and the 𝑘𝑡 estimate is obtained by multiplying the first singular value with the first 

column of the matrix 𝑽. 

6. Test the stationarity of the 𝑘𝑡 parameter data. If the data is not stationary with respect to variance, perform a 

transformation; if not stationary with respect to the mean, perform differencing. 

7. Select the best ARIMA model based on the lowest AIC value. 

8. Predict the mortality index parameter for year 𝑡 (𝑘𝑡) based on the best ARIMA model for future periods. 

9. Substitute the estimated parameter values into the Lee-Carter Equation (2). 

10. Forecast mortality probabilities using Equation (22). 

11. Compile the Life Table. 

12. Calculate the value of whole life insurance premium reserves using the prospective method with Equation (). 

13. Draw conclusions. 
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D. Flowchart 

A flowchart is a diagram that represents a process, system, or algorithm commonly used to document, plan, 

and illustrate a multi-step workflow. The following is the flowchart for this research: 

 
Figure 1. Flowchart 

IV. RESULT AND DISCUSSION 

A. Parameter Estimation 𝑎𝑥 

The data used in this case study comprises probability of death (𝑞𝑥) from the UN Indonesia Life Table, with 

ages 𝑥 = 𝑥0, 𝑥1, 𝑥2, … , 𝑥99 and years 𝑡 = 𝑡1, 𝑡2, 𝑡3, … , 𝑡55. Before estimating the parameter 𝑎𝑥, the first step is to 

calculate the values of ln(𝑚𝑥,𝑡) using Equation (20): 

ln(𝑚𝑥,𝑡) = ln (
2𝑞𝑥,𝑡

2 − 𝑞𝑥,𝑡

) 

A portion of the calculated ln(𝑚𝑥,𝑡) values for males can be seen in Table 3 below: 
 

Table 3. Result of ln(𝑚𝑥,𝑡) calculation for male 

Age (𝒙) 
Year (𝒕) 

1967 1968 1969 ⋯ 2019 2020 2021 

 
Start 

Input probability of death data 

 

Calculate the value of 𝑚𝑥,𝑡 and ln𝑚𝑥,𝑡 

 

Estimate the parameter 𝑎𝑥 by minimizing the error value 

 

Form the matrix 𝒁𝒙,𝒕 

 

Estimate the parameters 𝑏𝑥 and 𝑘𝑡 using singular value decomposition 

 

Test the stationarity of 

the 𝑘𝑡 parameter values 

 

Identify the ARIMA model for the 𝑘𝑡 values 

 

Evaluate the ARIMA model for the 𝑘𝑡 values 

 

Forecast the 𝑘𝑡 parameter for future periods 

 

Substitute the estimated parameter values into the Lee-Carter model equation 

 

Forecast the mortality probability with the linearity assumption 

 

Construct the Life Table 

 

Conclusion 

 

Finish 

Transform and/or 

differencing 

 
No 

Yes 
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0 -4.6315 -4.6721 -4.7208 ⋯ -3.8152 -3.8487 -3.8821 

1 -4.9588 -4.9974 -5.0448 ⋯ -6.5232 -6.5712 -6.6189 

2 -5.2456 -5.2825 -5.3287 ⋯ -6.7163 -6.7593 -6.8009 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 
97 -0.6897 -0.6884 -0.6904 ⋯ -0.8025 -0.6709 -0.6129 

98 -0.6383 -0.6369 -0.6389 ⋯ -0.7454 -0.6205 -0.5653 

99 -0.5913 -0.5899 -0.5918 ⋯ -0.6915 -0.5726 -0.5199 

 

Meanwhile, a portion of the calculated ln(𝑚𝑥,𝑡) values for females can be seen in Table 4 below: 

 
Table 4. Result of ln(𝑚𝑥,𝑡) calculation for female 

Age (𝒙) 
Year (𝒕) 

1967 1968 1969 ⋯ 2019 2020 2021 

0 -4.6315 -4.6721 -4.7208 ⋯ -3.8152 -3.8487 -3.8821 

1 -4.9588 -4.9974 -5.0448 ⋯ -6.5232 -6.5712 -6.6189 

2 -5.2456 -5.2825 -5.3287 ⋯ -6.7163 -6.7593 -6.8009 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 
97 -0.6897 -0.6884 -0.6904 ⋯ -0.8025 -0.6709 -0.6129 

98 -0.6383 -0.6369 -0.6389 ⋯ -0.7454 -0.6205 -0.5653 

99 -0.5913 -0.5899 -0.5918 ⋯ -0.6915 -0.5726 -0.5199 

 

The next step is to estimate the parameter 𝑎𝑥 by calculating the average mortality rate by age using Equation (7): 

�̂�𝑥 =
∑ (ln𝑚𝑥,𝑡)

55
𝑡=1

55
 

Table 5. Parameter estimation of �̂�𝑥 

Age (𝒙) 
Estimation of �̂�𝒙 

Male Female 

0 -2.8727 -3.0314 

1 -5.0432 -5.1317 

2 -5.3467 -5.4467 

⋮ ⋮ ⋮ 
97 -0.7299 -0.8210 

98 -0.6767 -0.7622 

99 -0.6275 -0.7073 

 

The estimated parameter �̂�𝑥 results in Table 5 can be visualized in Figure 2 and Figure 3. Based on the plot of �̂�𝑥 

in Figure 2 and Figure 3, it can be observed that the estimated parameter �̂�𝑥 shows an increasing trend for both 

males and females. This indicates that in the younger age range, there is a tendency for lower average mortality 

rates, while in the older age range, there is an increase in the average mortality rate. However, it is found that 

individuals aged 0 years, or newborns, have a relatively high average mortality rate. Therefore, it can be concluded 

that there is a tendency for the average mortality rate to increase with age.  

 
Figure 2. Parameter plot of �̂�𝑥 for male 

 
Figure 3. Parameter plot of �̂�𝑥 for female 
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B. Parameter Estimation of 𝑏𝑥 and 𝑘𝑡 

The estimation of parameters 𝑏𝑥 and 𝑘𝑡 is performed using singular value decomposition (SVD). The first 

step is to form the matrix 𝒁𝒙,𝒕 based on Equation (8). Thus, the resulting 𝒁𝒙,𝒕  matrix with dimensions 100×55 is 

as follows: 

𝑍𝑥,𝑡 = [

𝑍0,0 𝑍0,2

𝑍1,1 𝑍1,2

⋯ 𝑍0,55

⋯ 𝑍1,55

⋮ ⋮
𝑍100,1 𝑍100,2

  ⋱ ⋮
    ⋯ 𝑍100,55

] 

𝑍𝑥,𝑡,𝑚𝑎𝑙𝑒 = [

0.91714 0.88949
1.53050 1.48381

⋯ −1.0095
⋯ −1.5757

         ⋮                  ⋮         
0 0

   ⋱            ⋮       
⋯ 0

] 

𝑍𝑥,𝑡,𝑓𝑒𝑚𝑎𝑙𝑒 = [

0.94787 0.91766
1.56706 1.51626

⋯ −1.0578
⋯ −1.7041

         ⋮                  ⋮         
0 0

   ⋱            ⋮       
⋯ 0

] 

The next step is to decompose the matrix 𝒁𝒙,𝒕 using Equation (9). In this study, R-Studio software is utilized to 

decompose the matrix 𝒁𝒙,𝒕 using SVD. 

1) Parameter Estimation of 𝑏𝑥: The estimation of parameter 𝑏𝑥 can be obtained using Equation (11). Below 

are partial results of the estimation of parameter 𝑏𝑥. 

Table 6. Estimation parameter of �̂�𝑥 

Age (𝒙) 
Estimation of �̂�𝒙 

Male Female 

0 -2.8727 -3.0314 

1 -5.0432 -5.1317 

2 -5.3467 -5.4467 

⋮ ⋮ ⋮ 
97 -0.7299 -0.8210 

98 -0.6767 -0.7622 

99 -0.6275 -0.7073 

 

The estimated parameter �̂�𝑥 results in Table 6 can be visualized in the Figure 4 and Figure 5. The 

parameter �̂�𝑥 illustrates the sensitivity of the central mortality rate to changes in the mortality rate over 

time �̂�𝑡 at age 𝑥. From the illustrations in Figure 4 and Figure 5 above, it can be observed that the 

estimated values of parameter �̂�𝑥 for both genders, males and females, show a decreasing trend. For 

someone aged 0 years or a newborn, the value is relatively low and experiences a significant increase 

upon reaching 1 year of age. This phenomenon indicates that the pattern of the central mortality rate's 

influence on �̂�𝑡 tends to decrease with age. 

 
Figure 4. Parameter plot of �̂�𝑥 for male 

 
Figure 5. Parameter plot of �̂�𝑥 for female 

 

2) Parameter Estimation of 𝑘𝑡: The estimation of parameter 𝑘𝑡 can be obtained using Equation (13). 

Below are partial results of the estimation of parameter �̂�𝑡. 
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Table 7. Parameter estimation of �̂�𝑡 

Year (𝒕) 
Estimation of �̂�𝒕 

Male Female 

1967 0.023761 0.023042 

1968 0.038737 0.038223 

1969 0.036142 0.034945 

⋮ ⋮ ⋮ 
2019 0.001072 0.000936 

2020 0.000999 0.000789 

2021 0.000000 0.000000 

The estimated parameter �̂�𝑡 results in Table 7 can be visualized in the following plot: 

 
Figure 6. Parameter plot of �̂�𝑡 for male 

 
Figure 7. Parameter plot of �̂�𝑡 for female 

The parameter �̂�𝑡  represents the mortality rate in period 𝑡. Figures 6 and 7 illustrate that in 1967, the 

mortality rate was quite high for both males and females. There was a significant increase in 2004, and 

in 2021, there was a slight increase compared to the previous year. Overall, the visual data indicate that 

the mortality rate parameter shows a decreasing trend annually from 1967 to 2021. 

C. Parameter Prediction of �̂�𝑡 with ARIMA 

The prediction of parameter �̂�𝑡 is obtained using the ARIMA method. The �̂�𝑡 parameter is predicted for the 

next five-year period. The ARIMA forecasting process begins with examining the stationarity of the �̂�𝑡 data, 

followed by time series model identification and model evaluation. Once the best model is selected, the next step 

is to forecast or predict for several future periods. 

1) Stationarity Test: In this study, the Box-Cox test is used to examine the stationarity of the data with 

respect to variance. The data is considered stationary in variance if the maximum PPCC (Power of 

Principal Component Correlation) value is close to 𝜆 = 1. If the maximum PPCC value is not close to 

𝜆 = 1, a transformation process will be performed. The following are the results of the Box-Cox test 

conducted using R-Studio software. 

Table 8. Box-Cox test result of �̂�𝑡 for male and female 

𝝀 
PPCC 

Male Female 

-2.0 0.4314109 0.3840666 

-1.5 0.5169882 0.4527924 

-1.0 0.6579098 0.5907800 

-0.5 0.8304286 0.7938237 

0.0 0.9488413 0.9428356 

0.5 0.9840573 0.9869434 

1.0 0.9745968 0.9804364 

1.5 0.9502284 0.9571821 

2.0 0.9230443 0.9294233 

Based on Table 8, it can be seen that the highest PPCC values, 0.9840573 for males and 0.9869434 for 

females, are at 𝜆 = 0.5. This indicates that the data is not yet stationary with respect to variance. 

Therefore, according to the Box-Cox transformation criteria on Table 1, the data needs to be transformed 

using √𝑍𝑡. The following are the results of the Box-Cox test for the transformed data using R-Studio 

software: 
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Table 9. Box-Cox test result with transformation of �̂�𝑡 for male and female 

𝝀 
PPCC 

Male Female 

-2.0 0.6579098 0.5907800 

-1.5 0.7450354 0.6894723 

-1.0 0.8304286 0.7938237 

-0.5 0.9009240 0.8828485 

0.0 0.9488413 0.9428356 

0.5 0.9747741 0.9747622 

1.0 0.9840573 0.9869434 

1.5 0.9825143 0.9871380 

2.0 0.9745968 0.9804364 

In the Box-Cox transformation test, it was found that the highest PPCC value for males, 0.9840573, is 

at 𝜆 = 1, indicating that the data is stationary with respect to variance. However, for females, the highest 

PPCC value, 0.9871380, is at 𝜆 = 1.5, suggesting that the data is still not stationary with respect to 

variance. Therefore, the data for females needs to be further transformed using 𝑍𝑡√𝑍𝑡. The following 

are the results of the Box-Cox test for the transformed data using R-Studio software: 
Table 10. Box-Cox test results with data transformation of �̂�𝑡 for female 

𝛌 PPCC 

-2.0 0.4527924 

-1.5 0.5482309 

-1.0 0.6894723 

-0.5 0.8414580 

0.0 0.9428356 

0.5 0.9827753 

1.0 0.9871380 

1.5 0.9754989 

2.0 0.9571821 

Based on the Box-Cox transformation test, it was found that the highest PPCC value, 0.9871380, is at 

𝜆 = 1, indicating that the data is stationary with respect to variance. 

Next, the stationarity of the data with respect to the mean will be tested. In this study, the Augmented 

Dickey-Fuller (ADF) test is used. The data tested is the previously transformed data. The hypotheses 

used for the ADF test on the �̂�𝑡 data for males and females are as follows: 

H0 : The data is not stationary. 

H1 : The data is stationary. 

Decision-making in the ADF test is based on the p-value. The p-value is compared to the significance 

level to determine whether the data is stationary. The rejection region for this test is to reject the null 

hypothesis if the p-value is less than 𝛼 = 5%. Based on the results, the p-value is 0.4220 for males and 

0.1954 for females. According to the rejection region, the decision is not to reject the null hypothesis 

for both males and females. Therefore, it can be concluded that at a 5% significance level, the �̂�𝑡 data 

for males and females is not stationary with respect to the mean, so differencing is necessary. 

After differencing, the data is re-tested using the ADF test. The results show a p-value of 0.01 for both 

males and females. According to the rejection region, the decision is to reject the null hypothesis. 

Therefore, it can be concluded that at a 5% significance level, the �̂�𝑡 data for males and females is 

stationary with respect to the mean. Thus, the data is ready to proceed to the next stage, which is time 

series model identification. 

2) Time Series Model Identification: The time series model is identified based on the ACF (Autocorrelation 

Function) and PACF (Partial Autocorrelation Function) plots. Below are the ACF and PACF plots for 

the �̂�𝑡 data for males, generated using R-Studio software. 
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Figure 8. ACF plot of �̂�𝑡 for male 

 
Figure 9. PACF plot of �̂�𝑡 for male 

Based on the ACF and PACF plots above, it is observed that the ACF cuts off at lag 0 and 1, and the 

PACF cuts off at lag 1. Since there was 1 differencing step performed, the potential time series models 

could be: 

1. ARIMA (1,1,0) 

2. ARIMA (0,1,1) 

3. ARIMA (0,1,0) 

4. ARIMA (1,1,1) 

For females, the ACF and PACF plots generated using R-Studio software are as follows: 

 
Figure 10. ACF plot of �̂�𝑡 for female 

 
Figure 11. PACF plot of �̂�𝑡 for female 

Based on the ACF and PACF plots above, it is observed that the ACF cuts off at lag 0 and 1, and the 

PACF cuts off at lag 1. Since there was 1 differencing step performed, the potential time series models 

could be: 

1. ARIMA (1,1,0) 

2. ARIMA (0,1,1) 

3. ARIMA (0,1,0) 

4. ARIMA (1,1,1) 

3) Model Evaluation: Once the possible time series models are identified, the next step is to determine the 

best model by comparing the Akaike Information Criterion (AIC) values. The best model is the one 

with the smallest AIC value compared to the other models. The AIC values for each model, obtained 

using R-Studio software, are as follows. 

Table 11. AIC Value for male and female 

Model 
AIC Value 

Male Female 

ARIMA (1,1,0) with drift 268,36 308,31 

ARIMA (0,1,1) with drift 264,42 300,20 

ARIMA (0,1,0) with drift 277,38 318,20 

ARIMA (1,1,1) with drift 266,30 302,12 

ARIMA (1,1,0) without drift 286,24 320,00 

ARIMA (0,1,1) without drift 286,69 320,89 

ARIMA (1,1,1) without drift 287,81 321,95 
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Based on Table 11, it is observed that the smallest AIC values for both males and females are associated 

with Model number 2. Therefore, it can be concluded that the best model for forecasting the mortality 

index at year ttt �̂�𝑡 for both males and females is the ARIMA (0,1,1) model. 

4) Forecasting: The final step in the time series analysis process is to forecast the mortality index �̂�𝑡 for 

several future periods. In this forecasting stage, the mortality index �̂�𝑡 will be predicted for the next 

five periods (2022-2026). Here are the forecasted �̂�𝑡 values. 

Table 12. Prediction result of �̂�𝑡 

Year 
Prediction of �̂�𝒕 

Male Female 

2022 −35.54365 −40.34549 

2023 −37.00923 −41.96644 

2024 −38.47482 −43.58739 

2025 −39.94040 −45.20834 

2026 −41.40599 −46.82929 

Below are the graphs displaying the forecasted values of the mortality index parameter �̂�𝑡 for the years 

2022-2026 using the ARIMA (0,1,1) model: 

 
Figure 12. Plot of forecasted �̂�𝑡values for males 

 
Figure 13. Plot of forecasted �̂�𝑡values for females 

Based on Figures 12 and 13, it is evident that the forecasted values of �̂�𝑡 for 2022-2026 tend to decrease 

for both males and females. 

D. Life Table 

The mortality table constructed contains predicted probability of death for the years 2022-2026. The values 

of �̂�𝑥,𝑡 are calculated using the relationship between central death rates and probability of death. Therefore, the 

first step is to determine the central death rates (�̂�𝑥,𝑡). The predicted central death rates (�̂�𝑥,𝑡) can be obtained by 

substituting the estimated parameters �̂�𝑥,𝑡 from Table 5, �̂�𝑥 from Table 6, and the forecasted parameter �̂�𝑡 from 

Table 12 into the Lee-Carter model. A partial result of the predicted �̂�𝑥,𝑡 for males is shown in the following table: 
Table 13. Predicted central death rates for male 

Age (x) 2022 2023 2024 2025 2026 

0 0.02430 0.02347 0.02267 0.02189 0.02114 

1 0.00163 0.00154 0.00145 0.00137 0.00130 

2 0.00132 0.00125 0.00119 0.00112 0.00107 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
65 0.03233 0.03219 0.03206 0.03192 0.03179 

66 0.03548 0.03534 0.03520 0.03506 0.03492 

67 0.03888 0.03874 0.03859 0.03844 0.03829 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
97 0.46308 0.46232 0.46156 0.46080 0.46004 

98 0.48927 0.48851 0.48774 0.48697 0.48621 

99 0.51531 0.51456 0.51381 0.51305 0.51230 

 

Meanwhile, a portion of the calculated �̂�𝑥,𝑡 values for females can be seen in Table 14 below: 
 

Table 14. Predicted central death rates for female 

Age (x) 2022 2023 2024 2025 2026 
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0 0.01904 0.01835 0.01767 0.01703 0.01640 

1 0.00126 0.00119 0.00112 0.00105 0.00099 

2 0.00105 0.00099 0.00094 0.00089 0.00084 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
65 0.02018 0.01999 0.01980 0.01962 0.01943 

66 0.02230 0.02210 0.02189 0.02169 0.02150 

67 0.02469 0.02447 0.02425 0.02403 0.02382 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
97 0.42136 0.42063 0.41990 0.41917 0.41844 

98 0.44935 0.44867 0.44799 0.44731 0.44663 

99 0.47754 0.47693 0.47632 0.47571 0,47510 

 

Next, the probability of death values (�̂�𝑥,𝑡) are calculated using Equation (22). A portion of the predicted 

probability of death (�̂�𝑥,𝑡) in the mortality table from 2022-2026 for males can be seen in the following table: 

Table 15. Predicted probability of death for male 

Age (x) 2022 2023 2024 2025 2026 

0 0.02401 0.02320 0.02241 0.02165 0.02092 

1 0.00163 0.00154 0.00145 0.00137 0.00130 

2 0.00132 0.00125 0.00119 0.00112 0.00107 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
65 0.03181 0.03168 0.03155 0.03142 0.03129 

66 0.03486 0.03472 0.03459 0.03445 0.03432 

67 0.03814 0.03800 0.03786 0.03772 0.03758 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
97 0.37602 0.37552 0.37501 0.37451 0.37401 

98 0.39311 0.39261 0.39212 0.39162 0.39113 

99 0.40974 0.40926 0.40879 0.40831 0.40783 

 

The predicted mortality probabilities for males in Table 15 can be visualized in Figure 14.   

Based on the plot in Figure 14, it can be observed that the mortality probability values for Indonesian males 

increase with age for each year. Additionally, it can be seen that although the mortality probabilities from 2022 to 

2026 tend to decrease, the plot of mortality probabilities for these years does not show significant differences. This 

is because the average decrease in mortality probabilities for Indonesian males from 2022 to 2026 is only 1%. 

Meanwhile, a portion of the calculated �̂�𝑥,𝑡 values for females can be seen in Table 15. 

 
Figure 14. Plot of forecasted male probability of death for 2022-2026 

▬ 2022 

▬ 2023 

▬ 2024 

▬ 2025 

▬ 2026 

 

 
Table 16. Predicted probability of death for female 

Age (x) 2022 2023 2024 2025 2026 

0 0.01886 0.01818 0.01752 0.01688 0.01627 

1 0.00126 0.00119 0.00112 0.00105 0.00099 

2 0.00105 0.00099 0.00094 0.00089 0.00084 
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⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
65 0.01998 0.01979 0.01961 0.01943 0.01925 

66 0.02205 0.02185 0.02166 0.02146 0.02127 

67 0.02439 0.02417 0.02396 0.02375 0.02354 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
97 0.34804 0.34754 0.34704 0.34654 0.34604 

98 0.36691 0.36646 0.36601 0.36555 0.36510 

99 0.38550 0.38510 0.38470 0.38430 0.38391 

 

The predicted mortality probabilities for males in Table 16 can be visualized in the following plot: 

 
Figure 15. Plot of forecasted female probability of death for 2022-2026 

▬ 2022 

▬ 2023 

▬ 2024 

▬ 2025 

▬ 2026 

Based on the plot in Figure 15, it can be observed that the mortality probability values for Indonesian females 

increase with age for each year. Additionally, it can be seen that although the mortality probabilities from 2022 to 

2026 tend to decrease, the plot of mortality probabilities for these years does not show significant differences. This 

is because the average decrease in mortality probabilities for Indonesian females from 2022 to 2026 is only 2%. 

E. Discussion 

The Lee-Carter model, widely used for mortality forecasting, has several limitations and assumptions that 

should be considered for a comprehensive understanding of its results. One significant limitation is its reliance on 

a linear time trend in mortality improvement, which may not accurately capture sudden shifts or non-linear patterns 

due to unexpected events like pandemics or significant healthcare advancements. The model assumes that age-

specific mortality improvements are proportional across all age groups, which might not hold true in reality, 

potentially introducing bias into the projections. Additionally, the model does not explicitly account for cohort 

effects, which can significantly impact mortality trends for specific generations. The accuracy of the model is also 

dependent on the quality and extent of historical data used for parameter estimation, making it less reliable in 

regions with incomplete or inconsistent data records. Notably, the data used in this study are projections, meaning 

the results may also be less accurate due to the inherent uncertainty in projection data. These limitations highlight 

the need for cautious interpretation of the model's forecasts, as they may not fully account for all variables 

influencing mortality rates. 
To address these limitations and enhance the Lee-Carter model, several future developments and extensions 

can be considered. One approach is to incorporate cohort effects, as seen in extensions like the Renshaw-Haberman 

model, which can provide more accurate mortality forecasts by considering generational influences. Another 

potential improvement is the integration of non-linear time trends and machine learning techniques, which can 

better capture complex mortality patterns and abrupt changes. Additionally, using cause-specific mortality data 

can refine the model by accounting for different factors that affect mortality rates. Advances in computational 

power also open up possibilities for Bayesian methods, allowing for the incorporation of prior information and 

uncertainty estimation in forecasts. Moreover, extending the model to handle multi-population data can enhance 

its utility for comparative studies across different regions or demographic groups. These enhancements aim to 

provide more robust and adaptable tools for demographic forecasting, improving the reliability and applicability 

of the Lee-Carter model in various contexts. 

V. CONCLUSION 
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A. Conclusion 

Based on the results of the analysis and discussions conducted, it can be concluded that: 

1. The forecasted life table for Indonesia using the Lee-Carter model for the years 2022-2026 tends to decrease, 

with the average percentage decrease is 1% for males and 2% for females. 

2. The mortality probability values increase with age for each year, with an average percentage increase of 5%, 

for both males and females. 

B. Recommendations 

The recommendations provided for further research are as follows: 

1. Utilizing the actual population data of Indonesia from 1967-2021 in predicting the Indonesian mortality table 

for 2022-2026. 

2. Employing alternative models in constructing mortality tables, such as the Renshaw-Haberman model. 
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