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Abstract— Stocks are widely used in financial markets and can be an option for companies seeking to raise funds. 

Additionally, investors often opt for stocks as an investment due to their potential for providing high returns. To 

aid investors in making informed decisions when buying and selling stocks and mitigating risks, professionals 

have developed different theories and analyses to forecast stock prices. Auto Regressive Integrated Moving 

Average (ARIMA) (p,d,q) Within this investigation, we will employ technical analysis to forecast the weekly 

stock prices of PT Bank OCBC NISP Tbk (NISP.JK) for 7 weeks from Jan 7, 2022 to February 18, 2022. In this 

study, historical weekly stock price data for PT. Bank OCBC NISP Tbk (NISP.JK) from 1 January 2021 to 31 

December 2021 was collected from Yahoo Finance website to create a forecast. The research got 12 different 

ARIMA models, the analysis show that the ARIMA (2,2,1) is the best.  
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I. INTRODUCTION 

The objective of this document is to present a tangible and user-friendly illustration of ARIMA modeling, 

to forecast the stock price. Stocks represent a party’s ownership stake in a company of Limited Liability 

Company, providing a claim to the company’s income and assets, as well as the right to participate in the 

General Meeting of Stockholders (GMS). In the secondary market or daily stock trading, stock prices fluctuate 

based on supply and demand. Numerous factors, including company performance and industry-trends, as well 

as external factors, including company performance and industry trends, as well as external factors such as 

interest rates, inflation, exchange rates, and socio-political conditions, impact the demand and supply of stocks 

[1]. In addition, investing in stocks can provide a means of mitigating the effects of inflation. Inflation refers 

to the persistent and general increase in prices of goods and services over a given period of time [2]. The 

statement implies that the value of money decreases each year due to inflation, leading to a constant decline. 

Therefore, it is advisable not to limit savings to a bank that only offers 2% annual interest profit, especially 

considering that the annual inflation rate can range from 3% to 5%. The consequence of doing so would be that 

the money saved in the bank will not increase in value, since the interest earned is lower than the inflation rate. 

Instead, it would be more beneficial to invest the money or purchase assets that offer a higher return than the 

inflation rate [3]. 

The statement acknowledges that stock investment is generally more profitable, but it is important for an 

investor to carefully choose a stock portfolio that has the potential to yield positive returns. PT Bank OCBC 

NISP Tbk is a publicly listed bank in Indonesia that has been operating for over 75 years. It is a subsidiary of 

OCBC Bank, one of the largest financial services groups in Asia, and has a strong presence in Indonesia with 

over 300 branches and offices nationwide. The financial institution provides a variety of products and services, 

encompassing personal and business banking, wealth management, and insurance. Referred to as 'the Bank,' 

Bank OCBC NISP, formerly known as Bank NISP, holds the distinction of being the fourth oldest bank in 

Indonesia, founded on April 4, 1941, in Bandung under the name NV Nederlandsch Indische Spaar En Deposito 

Bank. Since 2005, OCBC Overseas Investments Pte. Ltd has been the majority stockholder with a stake of 

85.1% by the end of 2019. Recognized for its strong financial stability, OCBC Bank has always provided full 

support as a stockholder to Bank OCBC NISP for managing commercial banking services in Indonesia [4].  

In 2022, PT. OCBC NISP recorded a net profit of IDR 3.3 trillion. The bank's profit increased by 32% 

from the previous year of IDR 2.5 trillion. The increase in PT. OCBC NISP's profit was driven, among other 

things, by a 14% YoY increase in net interest income and a 25% YoY decrease in provision for losses. The 

improvement in the performance of Bank OCBC NISP was also evident in the credit disbursement, which 

increased by 14% YoY. The increase was supported by the credit disbursement in the business banking 

segment, which grew by 13% YoY, and retail banking grew by 16% YoY. One of the supporting factors for 

the increase in retail banking was the growth of consumer loans by 24% in 2022. The improvement in credit 

demand has also driven an increase in Loan to Deposits Ratio (LDR) to 77.2% at the end of 2022 [5].  
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The accuracy of the ARIMA model in predicting stock prices is above 85% for all industries, showing 

that it provides reliable predictions [6]. The study in [7], ARIMA models are used to forecast the stock prices 

of PT Bank Mandiri Tbk based on daily dataset from the April to July 2021. The study found that the ARIMA 

model provided accurate forecasts of the bank's stock prices of 9 day stock price data start from July 1, 2021, 

to July 18, 2021. The result demonstrates that the best model is ARIMA (1,2,1) with an accuracy of 0.95% 

MAPE. The recent study in [8], the forecasting Stock Price of PT. BCA Tbk show  accuracy by 14.03% MAPE 

from ARIMA(3,20,). The utilized data is considerably dated, therefore, acquiring recent data is essential to 

obtain the latest forecasting. 

The performance of an ARIMA model is evaluated including mean absolute error (MAE), mean absolute 

percentage error (MAPE), mean squared error (MSE), and root mean squared error (RMSE), to determine 

model accuracy. In general, lower values of these error metrics indicate better model performance. However, 

the acceptable range of error values can vary depending on the specific context of the analysis and the level of 

accuracy required for the forecasts to be useful.  This research aims to use the ARIMA model and historical 

stock price data from January to December 2021 to forecast the changes in the stock price between 7th January 

2022 and 18th February 2022. 

II. LITERATURE REVIEW 

A. Introduction to Time Series 

Time series analysis is a specific method for examining a set of data points collected over a period of 

time. In this approach, analysts systematically record data points at regular intervals throughout a specified 

timeframe, as opposed to sporadically or randomly capturing them. Stock traders frequently employ time series 

analysis to gain insights into trends within different stock prices. Time series charts prove particularly 

beneficial for stock analysts and traders, providing a clear visualization of the trend and trajectory of specific 

stock prices. This analytical technique serves as a valuable tool for comprehending the patterns and movements 

in the stock market [9]. A time series is essentially composed of the following four components including 

trend, seasonal variation, cyclical variation and random variation [9].  

B. Stationary and Non-Stationary Model 

In time series analysis, there are two important concepts to understand, stationary and non-stationary 

models. Stationary models represent a time series where statistical properties such as mean, variance, and 

covariance do not change over time. Stationary models include autoregressive (AR), moving average (MA), 

and autoregressive integrated moving average (ARIMA) models, and they are widely used in various fields 

such as finance, economics, engineering, and meteorology. These models allow for making forecasts based on 

past data and identifying trends and seasonal patterns. 

Non-stationary models, on the other hand, represent a time series where statistical properties change over 

time, such as trends, seasonal patterns, and cycles. Non-stationary models require additional processing to 

account for these changes, and some examples include the ARCH and GARCH models. Non-stationary models 

are also widely used in various fields and are important in time series analysis for identifying trends and 

patterns in non-stationary time series data [10]. Stationarity is classified into two types: strictly stationary and 

weakly stationary.  The time series {𝑋𝑡 ,t ∈ Z} is said to be strictly stationary if the joint distribution of 

(𝑋𝑡1, 𝑋𝑡2, … , 𝑋𝑡𝑘) is the same as that of (1 + ℎ, 𝑋𝑡2 + ℎ, … , 𝑋𝑡𝑘 + ℎ). This mean that, strict stationarity 

means that the joint distribution only depends on the “difference” ℎ, not the time (𝑡1, 𝑡2, … , 𝑡𝑘). The time 

series {Xt, t ∈ Z} is said to be weakly stationary if fulfilled the condition : i)  E [𝑋𝑡
2

]< ∞, ∀t ∈ Z; ii) E [𝑋𝑡] = 

µ, ∀t ∈ Z; and iii) γX (s,t) = γX (s + h,t + h), ∀s,t, h ∈ Z. Stated differently, three characteristics of a weakly 

stationary time series {X_t} are required: finite variation, constant first moment, and the second moment γX 

(s,t)  depending only on |t − s| and not on s or t [10]. 

C. Auto-Correlation Function (ACF) & Partial Auto-Correlation Function (PACF) 

The Autocorrelation Function (ACF) measures the correlation between a time series and its own lagged 

values. It is a plot of the correlation coefficient between the time series at different lags. The ACF can be used 

to identify the presence of a seasonality pattern in the time series. The Partial Autocorrelation Function (PACF) 

is similar to the ACF but it measures the correlation between two values of a time series while controlling for 

the values of the intermediate lags. It helps in identifying the order of an autoregressive (AR) process, which 

is a model that predicts the future values of a time series based on its past values.  

The general formula for the Autocorrelation Function (ACF) at lag k for a stationary time series {Xt} is: 

𝑨𝑪𝑭(𝒌)  =  𝑪𝒐𝒓𝒓(𝑿𝒕 , 𝑿𝒕−𝒌  )  =  
𝑪𝒐𝒗(𝑿𝒕 , 𝑿𝒕−𝒌  ) 

(𝑽𝒂𝒓(𝑿𝒕 )  ∗  √𝑽𝒂𝒓(𝑿𝒕−𝒌  ))
 (1) 
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Here, Corr (𝑋𝑡 , 𝑋𝑡−𝑘  ) represents the correlation between the observation at time t and the observation 

at time t-k, where k is the lag. Cov (𝑋𝑡 , 𝑋𝑡−𝑘  ) represents the covariance between the two observations, and 

Var (𝑋𝑡 ) and Var ( 𝑋𝑡−𝑘  ) represent the variances of the two observations. The denominator is a normalization 

factor that scales the covariance to lie between -1 and 1, which is the range of possible correlation coefficients. 

[10].  

The ACF (𝑘)gives us information about the strength and direction of the correlation between 

observations at lag k. If ACF (𝑘) is positive and close to 1, it indicates a strong positive correlation between 

the two observations. If ACF (𝑘) is negative and close to -1, it indicates a strong negative correlation between 

the two observations. If ACF (𝑘) is close to 0, it indicates no correlation between the two observations. 

 

The general formula for the Partial Autocorrelation Function (PACF) at lag k for a stationary time series {𝑋𝑡} 

is: 

𝑷𝑨𝑪𝑭 (𝒌) = 𝑪𝒐𝒓𝒓(𝑿𝒕 , 𝑿𝒕−𝒌  | 𝑿𝒕−𝟏  , 𝑿𝒕−𝟐 , 𝑿𝒕−𝟑  , … , 𝑿𝒕−𝒌+𝟏   (2) 

 

Here, Corr (𝑋𝑡 , 𝑋𝑡 − 𝑘|𝑋𝑡−1, 𝑋𝑡−2, … , 𝑋𝑡−𝑘 + 1) represents the correlation between the observation at 

time t and the observation at time 𝑡 − 𝑘, given the intervening values 𝑋𝑡−1  , 𝑋𝑡−2 , 𝑋𝑡−3  , … , 𝑋𝑡−𝑘+1   . This is 

called the partial correlation because it measures the direct correlation between two observations while 

controlling for the indirect correlation through the intervening values. 

The PACF(𝑘) gives us information about the direct correlation between observations at lag k, after 

removing the influence of the intervening values. If PACF(𝑘) is positive and close to 1, it indicates a strong 

positive correlation between the two observations, after controlling for the intervening values. If PACF(𝑘) is 

negative and close to -1, it indicates a strong negative correlation between the two observations, after 

controlling for the intervening values. If PACF(𝑘) is close to 0, it indicates no direct correlation between the 

two observations at lag k, after controlling for the intervening values.  

In practice, these formulas may need to be modified for non-stationary time series or to account for 

trends, seasonality, and other time series features. Additionally, there are various algorithms and software 

packages available to compute the ACF and PACF efficiently. 

D. Forecasting 

Making forecasts about a time series' future values based on historical observations is known as 

forecasting. It involves using statistical methods to identify patterns and trends in historical data, and then 

using these patterns to project future values of the time series. The goal of forecasting is to provide accurate 

and reliable estimates of future values, which can be used for planning, decision-making, and other purposes. 

It is a critical decision-making tool in many fields, including economics, finance, and business [11]. 

E. Estimated Eror-Value 

The term Estimated Error Value (EEV) is used in measurement and metrology to quantify the 

uncertainty associated with a measurement result. The EEV is a standard deviation or a confidence interval 

that represents an estimate of the difference between the measured and true value of a quantity. 

III. METHODOLOGY 

A. Stationery Model  

In this section we will discuss two types of stationary models including Autoregressive (AR) model and 

Movind Average (MA). AR that uses the dependent relationship between an observation and some number of 

lagged observations. AR model is a time series model that uses past values to predict future values. The AR 

model assumes that the future values of a variable are a linear function of its past values. The order of AR 

model is determined by the number of past values used to make predictions. An autoregressive model of order 

𝑝, abbreviated AR (𝑝), is of the form 

𝐗𝐭 = 𝛗𝟏𝐗𝐭−𝟏  +  𝛗𝟐𝐗𝐭−𝟐  + · · ·  + 𝛗𝐩𝐗𝐭−𝐩  +  𝐰𝐭  =  ∑ 𝛗𝐢

𝐩

𝐢 = 𝟏

𝐗𝐭−𝐢  +  𝐰𝐭 (3) 

where 𝑋𝑡 is stationary, 𝑤𝑡  ∼ 𝑤𝑛 (0, σ𝑤
2 ), and φ1, φ2, . . ., φ𝑝 (φ𝑝 ≠ 0) are model parameters. The 

parameter p indicates how far the data before a time in the past determines the data at the present time 

MA (Moving Average) model is a time series model that uses past errors to predict future values. The MA 

model assumes that the errors or residuals from the past values can be used to predict the future values. The order 

of MA model is determined by the number of past errors used to make predictions. A moving average model of 

order 𝑞, or MA(𝑞), is defined to be 
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𝑿𝒕 = 𝒘𝒕  +  𝜽𝟏𝒘𝒕−𝟏  +  𝜽𝟐𝒘𝒕−𝟐 · · ·  + 𝜽𝒒𝒘𝒕−𝒒  +  𝒘𝒕  =  𝒘𝒕  +  ∑ 𝜽𝒋𝒘𝒕−𝒋

𝒒

𝒋 = 𝟏

 (4) 

where 𝑤𝑡  ∼ 𝑤𝑛  (0, σ𝑤
2 ), and 𝜃1, 𝜃2. . ., 𝜃𝑞 (𝜃𝑞 ≠ 0) are parameters [10] . ACF and PACF can be used 

for determining ARIMA model hyperparameters 𝑝 and 𝑞, for more detail see at Table 1. 

TABLE  1 

Determining p and q from ACF and PACF plot 

  AR (𝑝) MA (𝑞) 
ARMA 

(𝑝, 𝑞) 

ACF Tails off 
Cuts of after 

lag 𝑞 
Tails off 

PACF 
Cuts of after 

lag 𝑝 
Tails off Tails off 

 

B. Box–Jenkins Method 

ARIMA (Autoregressive Integrated Moving Average) model is a combination of both AR and MA 

models, where integration of past values is also taken into account. ARIMA models are used to analyze and 

forecast time-series data, by fitting the time-series data to a linear equation that takes into account the past 

values, past errors and their integration. The method of creating models and predicting is explained in detail 

by Box and Jenkins in 1976. In conclusion, four crucial actions are advised: 

(i) Model-identification: selecting an appropriate model based on the characteristics of the time series 

data, such as stationarity, autocorrelation, and partial autocorrelation 

(ii) Model parameter estimation: estimating the parameters of the selected model using maximum 

likelihood estimation or a similar method 

(iii) Model diagnostic checking: checking the adequacy of the model by examining the residuals, 

autocorrelation function, and partial autocorrelation function. If the model is found to be inadequate, 

the identification and estimation stages may need to be repeated until a satisfactory model is obtained, 

and  

(iv) Model forecasting. 

Through the use of ACF and PACF plot, these four steps first identify tentative model parameters; 

next, coefficients are determined to identify the likely model; finally, the model is validated; finally, 

basic statistics and confidence intervals are used to assess the forecast's validity and monitor the 

model's performance [10]. These steps are illustrated in Figure 1. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Figure 1. Four steps of Box-Jenkins Method 

 

The Box-Jenkins ARMA model is a combination of the AR and MA models, which described below:  

𝒀𝒕 = 𝜹 + 𝝓𝟏𝒀𝒕−𝟏 + 𝝓𝟐𝒀𝒕−𝟐 + ⋯ + 𝝓𝒑𝒀𝒕−𝒑 + 𝒆𝒕 − 𝜽𝟏𝒆𝒕−𝟏 − 𝜽𝟐𝒆𝒕−𝟐 − ⋯ − 𝜽𝒒𝒆𝒕−𝒒, (6) 

where the terms in the equation have the same meaning as given for the AR and MA model. The box-Jenkins 

ARIMA model is combination of the AR and MA models, but plus the differencing, which described below: 

Postulate a general class 
of ARIMA model

Identification

Estimation of the Model

Diagnostic Checking

Forecasting



 

 
28 

 

𝑾𝒕 = 𝜹 + 𝝓𝟏𝑾𝒕−𝟏 + 𝝓𝟐𝑾𝒕−𝟐 + ⋯ + 𝝓𝒑𝑾𝒕−𝒑 + 𝒆𝒕 − 𝜽𝟏𝒆𝒕−𝟏 − 𝜽𝟐𝒆𝒕−𝟐 − ⋯ − 𝜽𝒒𝒆𝒕−𝒒, (7) 

 

where:  

𝑊𝑡 = ∇2𝑌𝑡 = 𝑌𝑡 − 2𝑌𝑡−1 + 𝑌𝑡−2 

𝑊𝑡−1 = ∇2𝑌𝑡−1 = 𝑌𝑡−1 − 2𝑌𝑡−2 + 𝑌𝑡−3 

𝑊𝑡−2 = ∇2𝑌𝑡−2 = 𝑌𝑡−2 − 2𝑌𝑡−3 + 𝑌𝑡−4 

𝑊𝑡−𝑛 = ∇2𝑌𝑡−𝑛 = 𝑌𝑡−𝑛 − 2𝑌𝑡−(𝑛+1) − 𝑌𝑡−(𝑛+2) 

The Box-Jenkins model supposes that the time series is stationary, and if it's not, Box and Jenkins suggest 

taking differences one or more times to achieve stationarity. By doing this, we can create an ARIMA model, 

where the "I" stands for "Integrated." These models are very flexible because they include both autoregressive 

and moving average terms.  

C. Estimated Error Value 

a) Mean Square Error (MSE) 

It is a commonly used metric to evaluate the accuracy of a predictive model. MSE measures the average 

of the squared differences between the predicted and actual values of a time series. The formula is: 

𝐌𝐒𝐄 =
∑(𝐲(𝐢) − �̂�(𝐢))𝟐

𝐧
 (8) 

b) Root Mean Square Error (RMSE) 

It is a commonly employed metric for assessing the precision of a predictive model, particularly within 

the context of time series analysis. RMSE (Root Mean Square Error) quantifies the disparity between 

predicted and actual values in a time series, often referred to as residuals. Essentially, RMSE serves as an 

indicator of how effectively the model aligns with the observed data. It is defined as: 

𝐑𝐌𝐒𝐄 = √
∑ ‖𝐲(𝐢) − �̂�(𝐢)‖𝟐𝐍

𝐢=𝟏

𝒏
 (9) 

c) Mean Absolute Error (MAE)  

MAE measures the average difference between the predicted and actual values of a time series. The 

equation of MAE can be written as: 

𝐌𝐀𝐄 =
𝟏

𝐧
 ∑  |𝐲(𝐢) − �̂�(𝐢)|

𝐧

𝐢=𝟏

 (10) 

 

d) Mean Absolute Percentage Error (MAPE) 

MAPE is a metric designed to assess the average percentage variance between predicted and actual values 

in a time series. This computation involves determining the average of the absolute percentage errors, 

where each error is the absolute value of the residual divided by the corresponding actual value. The 

formula is: 

𝐌𝐀𝐏𝐄 =
𝟏

𝐧
 ∑  

|𝐲(𝐢) − �̂�(𝐢)|

|𝐲(𝐢)|

𝐧

𝐢=𝟏

 (11) 

The explanation of  Equation (8)-(11) are  n is numbers of observation, y(i) is actual value for the 𝑖𝑡ℎ 

observation and �̂�(𝑖) = predicted value for the 𝑖𝑡ℎ observation [12]. 
e) Akaike Information Criterion (AIC) 

AIC (Akaike Information Criterion) is a metric designed to assess how well a statistical model fits the 

data, considering a penalty for the number of parameters employed in the model. The calculation of AIC 

involves utilizing the log-likelihood of the model and incorporating the count of parameters utilized in 

the model. A lower AIC value indicates a better fit of the model to the data. The formula is: 

𝐀𝐈𝐂 =  −𝟐𝐥𝐨𝐠(𝐦𝐚𝐱𝐢𝐦𝐮𝐦 𝐥𝐢𝐤𝐞𝐥𝐢𝐡𝐨𝐨𝐝)  +  𝟐𝐤 (12) 

where k represent the number of model parameters. Log-likelihood is a measure of model fit. The 

higher the number, the better the fit [10]. 

IV. ANALYSIS AND DISCUSSION 

A. THE HISTORICAL DATA 

Overviewed the weekly stock price per share of PT. Bank OCBC NISP (NISP.JK) from January to 

December 2021, with the total 51 weeks or 51 data. The data is processed using R Studio. The table below 

presents the dataset. 
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TABLE  2 

Weekly Stock Price of PT OCBC NISP Tbk (NISP.JK) 

Date Stock Price (Close) Date Stock Price (Close) 

01/01/2021 845 09/07/2021 720 

08/01/2021 890 16/07/2021 725 

15/01/2021 880 23/07/2021 720 

22/01/2021 810 30/07/2021 720 

29/01/2021 835 06/08/2021 710 

05/02/2021 890 13/08/2021 700 

12/02/2021 850 20/08/2021 700 

19/02/2021 870 27/08/2021 705 

26/02/2021 900 03/09/2021 695 

05/03/2021 890 10/09/2021 705 

12/03/2021 915 17/09/2021 695 

19/03/2021 880 24/09/2021 685 

26/03/2021 860 01/10/2021 715 

02/04/2021 870 08/10/2021 720 

09/04/2021 860 15/10/2021 720 

16/04/2021 845 22/10/2021 690 

23/04/2021 815 29/10/2021 695 

30/04/2021 805 05/11/2021 695 

07/05/2021 800 12/11/2021 690 

14/05/2021 800 19/11/2021 695 

21/05/2021 805 26/11/2021 670 

28/05/2021 810 03/12/2021 670 

04/06/2021 815 10/12/2021 670 

11/06/2021 800 17/12/2021 665 

18/06/2021 790 24/12/2021 670 

25/06/2021 775 31/12/2021 670 

02/07/2021 765   

 

In the beginning of data processing, statistical descriptive is presented dan the result indicates that 

interval data between 665 and 915 with centered on 769.53 dan standard deviation is 79.03.  Next step is start 

to processing of data to obtain the ARIMA Model by using R software. To do this, several essential packages 

are required, including TSA, forecast, tseries, readxl, and ggplot. The forecast package provides methods and 

utilities for visualizing univariate analysis of time series predictions, incorporating techniques like exponential 

smoothing via state-space models and automatic modeling using ARIMA. The TSA package is utilized for 

accessing functions such as ACF (Autocorrelation Function), PACF (Partial Autocorrelation Function), and 

ARIMA. The tseries package is employed to conduct the Augmented Dickey-Fuller Test (ADF Test). Using 

the readxl package facilitates the seamless importation of xlsx data into R Studio. Finally, ggplot is 

instrumental for plotting the data. 

In the subsequent step, the data on the weekly stock price per share of NISP.JK is visualized, with the x-

axis representing the date and the y-axis indicating the stock price.   

  

   

 
Figure 2. Plot of data NISP.JK weekly stock price 
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B. STATIONARITY CHECK 

To verify whether the data is stationary, the "adf.test(data)" function is used in R Studio to perform the 

Augmented Dickey-Fuller Test (ADF Test). 

The Augmented Dickey-Fuller Test (ADF Test) was performed on the original data, yielding a p-value 

of 0.2186, which is greater than 0.05. This result indicates that the stock price data for the NISP.JK is non-

stationary. Thus, based on the first test, the data are non-stationary. We need to perform differencing to make 

this data stationary by calling the “diff(data)” function. For the first differencing, the result still not smaller than 

0.05, that means the data not stationary yet. Then we do the second differencing. The obtained results are 

noteworthy because the resulting p-value of 0.01 is less than 0.05, indicating that the data is stationary and has 

a constant mean. Based on this, it can be inferred that the second differentiation of the weekly stock price 

NISP.JK has yielded data suitable for forecasting using the ARIMA model. Thus, the value of 𝑑 used is 2. 

    

    Figure 3: Plot of 2nd Differencing Stock Price NISP.JK 

 

 

C. ARIMA MODEL SPECIFICATION 

In this section, the plot of the Auto Correlation Function (ACF) and Partial Auto Correlation Function 

(PACF) is presented. The appropriate ARIMA model for the NISP.JK weekly stock price data can be found 

by analyzing of the both plots. 

  

Figure 4: Plot PACF and ACF after 2nd Level of Differentiation (d = 2) 
 

Based on the PACF and ACF plots in Figure 4, it can be observed the initial ARIMA model for this data is ARIMA 

(2,2,3). After conducting further analysis on the data, several ARIMA models were proposed available at Table 

3. 
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TABLE 3 

 ARIMA CONSTRUCTED 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. PARAMETER ESTIMATION 

 The parameter estimates for the autoregressive (AR) function, denoted as 𝜑𝑝, and the moving average 

(MA) function, denoted as 𝜃𝑞, can be obtained by reviewing the summary of each model. By running the code, 

it can obtain the values for AR1 to AR2, MA1 to MA3, MSE, Log Likelihood, and AIC. These values will be 

taken into account when selecting the most appropriate ARIMA model. The output of this function can be 

viewed in the console, as shown in Tabel 4. 

  TABLE 4 

 PARAMETER ESTIMATION FOR CANDIDATE ARIMA MODEL 

No. 

Model 

ARIMA 
AR 1 AR 2 MA 1  MA 2 MA 3  

Log 

Likelihood 
AIC MSE 

1 (2,2,3) -0.6821 -0.5013 -0.4357 -0.5029 -0.0615 -224.45 458.9 352.5 

2  (2,2,2) -0.655 -0.4489 -0.4621 -0.5379   -224.47 456.93 352.5 

3 (2,2,1) -0.2027 -0.3826 -1     -225.82 457.63 370.9 

4 (2,2,0) -0.7376 -0.7038       -230.2 464.4 472.8 

5 (1,2,3) -0.4457   -0.6188 -0.7631 0.3819 -225.37 458.74 365 

6 (1,2,2) 0.267   -1.5076 0.5076   -228.58 463.17 416.6 

7 (1,2,1) -0.138   -1     -229.5 463.01 436.8 

8 (1,2,0) -0.3977         -243.67 489.34 824.2 

9  (0,2,3)     -0.9878 -0.4014 0.3892 -226.62 459.24 382.9 

10  (0,2,2)     -1.2768 0.2768   -228.89 461.78 422.8 

11  (0,2,1)     -1     -229.94 461.89 446.8 

12  (0,2,0)           -247.87 495.74 975 

 

E. RESIDUAL ANALYSIS 

Next step is find the best ARIMA model for prediction purposes, it is necessary to perform a normality test 

using the Shapiro test and Ljung-Box test. The model with a p-value greater than 0.05 from both tests will be 

selected as the best model. Table 5 is present the summary values for each model. According to Table 5, the 

models that meet the criteria of the Shapiro and Ljung-Box tests are Arima model with no. 1, 2, 3,5,6 and 9. To 

determine the best model, we must compare the four error value estimation parameters. After comparison, it can 

Model ARIMA P d q 

(2,2,3) 2 2 3 

(2,2,2) 2 2 2 

(2,2,1) 2 2 1 

(2,2,0) 2 2 0 

(1,2,3) 1 2 3 

(1,2,2) 1 2 2 

(1,2,1) 1 2 1 

(1,2,0) 1 2 0 

(0,2,3) 0 2 3 

(0,2,2) 0 2 2 

(0,2,1) 0 2 1 

(0,2,0) 0 2 0 
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be seen that models 2 and 3 have the smallest AIC values, making them potential candidates for further 

comparison. 

TABLE 5 

RESULT OF RESIDUAL ANALYSIS  

No. Model ARIMA Uji Saphiro Uji Ljung-Box AIC Accepted 

1  (2,2,3) 0.06807 0.5463 458.9 Yes 

2 (2,2,2) 0.1091 0.5473 456.93 Yes 

3 (2,2,1) 0.3749 0.3126 457.63 Yes 

4 (2,2,0) 0.001003 0.7844 464.40 No 

5 (1,2,3) 0.4347 0.8257 458.74 Yes 

6 (1,2,2) 0.05014 0.4223 463.17 Yes 

7 (1,2,1) 0.006753 0.8259 463.01 No 

8 (1,2,0) 0.008439 0.1263 489.34 No 

9 (0,2,3) 0.1058 0.6566 459.24 Yes 

10 (0,2,2) 0.01412 0.3263 461.78 No 

11 (0,2,1) 0.0118 0.6525 461.89 No 

12 (0,2,0) 0.02812 0.004338 495.74 No 

 

TABLE 6 

ERROR VALUE ESTIMATION PARAMETERS COMPARISON BETWEEN MODEL 2 AND MODEL 3 

  ARIMA (2,2,2) ARIMA (2,2,1) 

MSE 395.59871 387.13938 

RMSE 19.88966 19.67586 

MAE 18.08417 1796.473% 

MAPE 2.795% 3.099% 

 

According to Tabel 6, ARIMA (2,2,1) is considered the best among these models as it has the lowest values 

for MSE, RMSE, and MAE, and the second-lowest AIC value compared to the other models.  

 

Below are the visualization plot and norm distribution plot for the ARIMA Model (2,2,1). 

 

  

       Figure 5: Residual Plot and Normal QQ-Plot of ARIMA (2,2,1) 
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Figure 6: Plot of ACF and PACF of ARIMA (2,2,1) 

 

Figure 7: Plot of Exchange Rate of CNY/USD Prediction Result 

  

TABLE 7 

ACTUAL DATA AND PREDICTED DATA FOR SEVEN WEEKS 

DATE ACTUAL 

DATA 
PREDICTED  

DATA 

LOWER 

 BOUND 

UPPER 

 BOUND 

MSE RMSE MAE MAPE 

2022-01-07 645 662.1425 630.1546 694.1304 293.86531 293.86531 17.14250 2.658% 

2022-01-14 640 657.7910 616.4977 699.0843 316.51968 316.51968 17.79100 2.780% 

2022-01-21 625 655.7349 611.5753 699.8944 944.63408 944.63408 30.73490 4.918% 

2022-01-28 645 651.8721 603.1355 700.6086 47.22576 47.22576 6.87210 1.065% 

2022-02-04 675 647.4973 593.0823 701.9124 756.39851 756.39851 27.50270 4.074% 

2022-02-11 660 643.9176 585.1704 702.6648 258.64359 258.64359 16.08240 2.437% 

2022-02-18 650 640.3725 577.7296 703.0155 92.68876 92.68876 9.62750 1.481% 

RESULT 387.13938 19.67586 17.96473 3.099% 
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Table 7 present the actual data and predicted data resulted from ARIMA (2,2,1). That table also calculate of error 

of this prediction using some measurement such as MSE, RSME, MAE and MAPE. If we compare it with previous 

work [7], they had a MAPE of 0.95%, which is the same; however, other error values such as MSE, RMSE, and 

MAE were not explained. While if it is compared with other previous study [8],  the result of accuracy is better.  

V. CONCLUSION 

ARIMA modeling is an effective method for forecasting the stock price of NISP.JK. The best and most 

appropriate ARIMA model for predicting the exchange rate of CNY to USD is ARIMA (2,2,1), with an error rate 

of 3.099% based on the MAPE percentage. This indicates that the model's accuracy in predicting based on actual 

data is 96.901%. The forecast suggests that the stock price will fall from January 7, 2022, to February 18, 2022. 

The most suitable formula for this model is ARIMA (2,2,1), which is described below: 

 

𝒀𝒕 = 𝟏. 𝟕𝟗𝟕𝟑𝒀𝒕−𝟏 − 𝟎. 𝟗𝟕𝟕𝟐𝒀𝒕−𝟐 + 𝟎. 𝟓𝟔𝟐𝟓𝒀𝒕−𝟑  −  𝟎. 𝟑𝟖𝟐𝟔𝒀𝒕−𝟒 + 𝒆𝒕 + 𝒆𝒕−𝟏 

 

The forecasting of this stocks will give insight for the future condition.  The result is can be considered for investor 

when they design of strategy of investment in stock.  However, it should be emphasized that the limitations of this 

research are that residuals must follow a normal distribution, requirement of data stationarity, free from correlation 

among residuals, assume constant residuals. The important thing here is that the accuracy of forecasting will go 

worst when the time of forecasting is longer. Beside that, there are also many other factors that influence changes 

in stock prices, such as inflation and other economic factors. For further research, it is recommended to perform 

forecasting using other methods such as the ARIMA GARCH model, AFRIMA, and deep learning. 

 

REFERENCES 

 

[1]  OJK, "Saham," [Online]. Available: 

https://sikapiuangmu.ojk.go.id/FrontEnd/CMS/Category/64. 

[2]  T. Clark, "The Balance," 12 March 2021. [Online]. Available: 

https://www.thebalance.com/how-inflation-affects-the-stock-market-4170135. 

[3]  Investopedia, "Inflation," October 2020. [Online]. Available: 

http://www.investopedia.com/terms/i/inflation.asp. 

[4]  OCBC, "Profile OCBC NISP," [Online]. Available: 

https://www.ocbcnisp.com/id/tentang-ocbc-nisp/profile. 

[5]  Kontan, "Ini Jadwal Pembayaran Dividen OCBC NISP Dengan Yield 6,86%," 12 April 

2023. [Online]. Available: https://investasi.kontan.co.id/news/ini-jadwal-pembayaran-

dividen-ocbc-nisp-dengan-yield-686. 

[6]  P. Mondhal, L. Shit and S. Gowami, "Study of effectiiveness of time series modelling 

(ARIMA) in forecasting stock price," International Journal of Computer Science, 

Engineering and Applications, vol. 4, no. 2, 2014.  

[7]  E. A. Widodo, E. S. Nugraha and D. A. Hamzah, "Forecasting PT Bank Mandiri Tbk 

Stock Price Using ARIMA," in Symposium on Data Science, Jababeka, CIkarang, 2022.  

[8]  A. Olivia and E. S. Nugraha, "Forecasting PT Bank Central Asia Tbk Stock Price Using 

ARIMA," Journal of Actuarial, Finance and Risk Managment, vol. 2, no. 1, pp. 1-27, 

2023.  

[9]  J. Jose, "Introduction to time series analysis," August 2022. [Online]. Available: 

https://www.researchgate.net/publication/362389180_INTRODUCTION_TO_TIME_S

ERIES_ANALYSIS_AND_ITS_APPLICATIONS. 

[10]  J. D. Cryer and K.-S. Chan, Time Series Analysis With Application in R, New York: 

Springer, 2008.  

[11]  M. Suleiman, I. Muhammad, A. Z. Adamu, Y. Zakari, R. Iliyasu, A. Muhammad, I. 

Adamu and M. Abdu, "Modelling Nigeria Crude Oil Prices using ARIMA Time Series 



 

 
35 

 

Models," Journal of Science and Technology Research, vol. 5, no. 1, pp. 230-241, 

2023.  

[12]  C. D. Montgomery, L. J. Cheryl and M. Kulahci, Introduction to time series analysis 

and forecasting, New Jersey: Jhon Wiley & Sons, 2008.  

 
 

 

 

 
 

 


