SENTIMENT ANALYSIS OF STUDENT SATISFACTION TOWARDS DISTANCE LEARNING USING MACHINE LEARNING METHOD

M Andres, Tjong WanSen, Rusdianto Roestam

Abstract


The Covid-19 pandemic forces the entire society
to change their way of life. One of them is the process of face-to-
face learning changing into distant learning. Various responses
arise from students during the implementation of this new
system, both positive and negative, indicating the level of student
satisfaction. The sentiment analysis of students' comments
during distance learning was conducted using machine learning
algorithms and tools Rapid miner. Literature study shows that
the Naive Bayes, K-NN, and Decision Tree algorithms have very
high accuracy, so this research uses those methods to get high-
accuracy results. The research shows the following results;
Naive Bayes is 93.80% and class precision for pred. Positive
93.80% and pred. negative 100.00%. The K-NN algorithm is
92.49% and class precision for pred. positive is 92.37%, pred.
negative 100%. The Decision Tree method is 90.81% with a
standard deviation of (+-) 0.58 and class precision for pred.
positive 90.81% and class pred. negative 0.00%.


Keywords


distance learning, sentiment analysis, Naive Bayes, K-NN, Decision Tree, and Rapid Miner

Full Text:

PDF

References


REFERENCES

Amra, I. A., & Maghari, A. Y. (2017). Student

Performance Prediction Using KNN and Naïve Bayesian.

th International Conference on Information Technology

(ICIT). Amman: IEEE.

An, Y., Sun, S., & Wang, S. (2017). Naïve Bayes

Classifier for Music Emotion Classification Based on

Lyrics. 2017 IEEE/ACIS 16th International Conference

on Computer and Information Science (ICIS). Wuhan:

IEEE.

Anggraini, S., Akbar, M., Wijaya, A., Syaputra, H., &

Sobri, M. (2021). Klasifikasi Gejala Penyakit

Coronavirus Disease 19 (COVID-19) Menggunakan

Machine Learning. Journal of Software Engineering

Ampera.

Arista, A. (2022). Comparison Decision Tree and Logistic

Regression Machine Learning Classification Algorithms

to determine Covid-19. Sinkron : Jurnal dan Penelitian

Teknik Informatika.

Azizah, E. N., Wibawa, A. P., & Pujianto, U. (2019).

Perbandingan Algoritma Naive Bayes dan C4.5 Untuk

Prediksi Kelulusan Mahasiswa Dalam Ruang Belajar

Virtual. Malang: Universitas Negeri Malang.

Barus, S. P. (2022). Penerapan Model Decision Tree pada

Machine Learning untuk Memprediksi Calon Potensial

Mahasiswa Baru. Jurnal Ikraith Informatika

Budi, S. (2017). Text Mining Untuk Analisis Sentimen

Review Film Menggunakan Algoritma K-Means; Text

Mining For Movie Review Sentiment Analysis Using K-

Means Algorithm. Techno.COM.

Chandani, V., Wahono, R. S., & Purwanto. (2015).

Komparasi Algoritma Klasifikasi Machine Learning Dan

Feature Selection pada Analisis Sentimen Review Film.

Journal of Intelligent Systems.

Firmansyah, & Yulianto, A. (2021). Machine Learning

with Decision Tree for Predict Invoice Payment, Case

Study: Gramedia Jakarta. Journal of Informatics and

Telecommunication Engineering.

Fitrianah, D., Dwiasnati, S., H, H. H., & Baihaqi, K. A.

(2021). Penerapan Metode Machine Learning untuk

Prediksi Nasabah Potensial menggunakan Algoritma

Klasifikasi Naïve Bayes. Faktor Exacta.

Fitriyyah, S. N., Safriadi, N., & Pratama, E. E. (2019).

Analisis Sentimen Calon Presiden Indonesia 2019 dari

Media Sosial Twitter Menggunakan Metode Naive

Bayes. Jurnal Edukasi dan Penelitian Informatika.

Ipmawati, J., Kusrini, & Luthfi, E. T. (2017). Komparasi

Teknik Klasifikasi Teks Mining Pada Analisis Sentimen.

Indonesian Journal on Networking and Security, 28.

Izati, N. A., Warsito, B., & Widiharih, T. (2019).

Prediksi Harga Emas Menggunakan Feed Forward Neural

Network Dengan Metode Extreme Learning Machine.

JURNAL GAUSSIAN.

Khoeri, I., & Mulyana, D. I. (2021). Implementasi

Machine Learning dengan Decision Tree Algoritma C4.5

dalam Penerimaan Karyawan Baru pada PT. Gitareksa

Dinamika Jakarta . Jurnal Sosial dan Teknologi

(SOSTECH) , 615.

Kurniawan, R., & Apriliani, A. (2020). Analisis

Sentimen Masyarakat Terhadap Virus Corona

Berdasarkan Opini Dari Twitter Berbasis Web Scrapper.

Jurnal Informatika Sains dan Teknologi.

Lestari, A. R., Perdana, R. S., & Fauzi, M. A. (2017).

Analisis Sentimen Tentang Opini Pilkada Dki 2017 Pada

Dokumen Twitter Berbahasa Indonesia Menggunakan

Naïve Bayes dan Pembobotan Emoji. Jurnal

Pengembangan Teknologi Informasi dan Ilmu Komputer.

Najar, A. M., Sudarsana, I. W., Albab, M. U., &

Andhika, S. (2022). Machine Learning untuk Identifikasi

Jenis Kanker Darah (Leukemia). Vygotsky: Jurnal

Pendidikan Matematika dan Matematika.

Nasution, M. R., & Hayaty, M. (2019). Perbandingan

Akurasi dan Waktu Proses Algoritma K-NN dan SVM

dalam Analisis Sentimen Twitter. Jurnal Informatika.

Oktaviana, N. E., Sari, Y. A., & Indriati. (2019). Analisis

Sentimen Terhadap Kebijakan Kuliah Daring Selama

Pandemi Menggunakan Pendekatan Lexicon Based

Features Dan Support Vector Machine. Jurnal Teknologi

Informasi dan Ilmu Komputer.

Pudjajana, A. M., & Manongga, D. (2018). Sentimen

Analisis Tweet Pornografi Kaum Homoseksual Indonesia

Di Twitter Dengan Naive Bayes. Jurnal SIMETRIS.

Puspita, R., & Widodo, A. (2020). Perbandingan Metode

KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis

Sentimen Pengguna Layanan BPJS. Jurnal Informatika

Universitas Pamulang.

Rahman, M., Ahmed, M. T., Nur, S., & Islam, A. Z.

(2022). The prediction of Coronavirus Disease 2019

Outbreak on Bangladesh Perspective Using Machine

Learning: A Comparative Study. International Journal of

Electrical and Computer Engineering (IJECE).

Ruhyana, N. (2019). Analisis Sentimen Terhadap

Penerapan Sistem Plat Nomor Ganjil/Genap Pada Twitter

Dengan Metode Klasifikasi Naive Bayes. Jurnal IKRA-

ITH Informatika.

Samsir, Ambiyar, V, U., E, F., & W, R. (2021). Analisis

Sentimen Pembelajaran Daring Pada Twitter di Masa

Pandemi COVID-19 Menggunakan Metode Naïve Bayes.

Jurnal Media Informatika Budidarma.

Sari, D. N., Adelia, F., Rosdiana, F., Butar, B. B., &

Hariyanto, M. (2020). Analisa Sentimen Terhadap

Review Produk Kecantikan Menggunakan Metode Naive

Bayes Classifier. Jurnal Informatika Universitas

Muhammadiyah Tangerang.

Sari, F. V., & Wibowo, A. (2019). Analisis Sentimen

Pelanggan Toko Online JD.ID Menggunakan Metode

Naïve Bayes Classifier Berbasis Konversi Ikon Emosi.

SIMETRIS.

Simamora, R. J., Tibyani, & Sutrisno. (2019). Peramalan

Curah Hujan Menggunakan Metode Extreme Learning

Machine. Jurnal Pengembangan Teknologi Informasi dan

Ilmu Komputer.

Sipayung, E. M., Maharani, H., & Zefanya, I. (2016).

Perancangan Sistem Analisis Sentimen Komentar

Pelanggan Menggunakan Metode Naive Bayes Classifier.

Jurnal Sistem Informasi.

Wardani, N. R., & Erfina, A. (2021). Analisis Sentimen

Masyarakat Terhadap layanan Konsultasi Dokter

Menggunakan Algoritma Naive Bayes. SISMATIK

(Seminar Nasional Sistem Informasi dan Manajemen

Informatika) (p. 11). Sukabumi: Universitas Nusa Putra.

Wiyono, S., & Abidin, T. (2018). Perbandingan

Algoritma Machine Learning SVM dan Decision Tree

untuk Prediksi Keaktifan Mahasiswa. Jurnal Dan

Penelitian Teknik Informatika




DOI: http://dx.doi.org/10.33021/itfs.v9i1.5073

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 IT for Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


All articles in this journal are indexed in:

  


 Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.