SENTIMENT ANALYSIS OF STUDENT SATISFACTION TOWARDS DISTANCE LEARNING USING MACHINE LEARNING METHOD
Abstract
The Covid-19 pandemic forces the entire society
to change their way of life. One of them is the process of face-to-
face learning changing into distant learning. Various responses
arise from students during the implementation of this new
system, both positive and negative, indicating the level of student
satisfaction. The sentiment analysis of students' comments
during distance learning was conducted using machine learning
algorithms and tools Rapid miner. Literature study shows that
the Naive Bayes, K-NN, and Decision Tree algorithms have very
high accuracy, so this research uses those methods to get high-
accuracy results. The research shows the following results;
Naive Bayes is 93.80% and class precision for pred. Positive
93.80% and pred. negative 100.00%. The K-NN algorithm is
92.49% and class precision for pred. positive is 92.37%, pred.
negative 100%. The Decision Tree method is 90.81% with a
standard deviation of (+-) 0.58 and class precision for pred.
positive 90.81% and class pred. negative 0.00%.
Keywords
Full Text:
PDFReferences
REFERENCES
Amra, I. A., & Maghari, A. Y. (2017). Student
Performance Prediction Using KNN and Naïve Bayesian.
th International Conference on Information Technology
(ICIT). Amman: IEEE.
An, Y., Sun, S., & Wang, S. (2017). Naïve Bayes
Classifier for Music Emotion Classification Based on
Lyrics. 2017 IEEE/ACIS 16th International Conference
on Computer and Information Science (ICIS). Wuhan:
IEEE.
Anggraini, S., Akbar, M., Wijaya, A., Syaputra, H., &
Sobri, M. (2021). Klasifikasi Gejala Penyakit
Coronavirus Disease 19 (COVID-19) Menggunakan
Machine Learning. Journal of Software Engineering
Ampera.
Arista, A. (2022). Comparison Decision Tree and Logistic
Regression Machine Learning Classification Algorithms
to determine Covid-19. Sinkron : Jurnal dan Penelitian
Teknik Informatika.
Azizah, E. N., Wibawa, A. P., & Pujianto, U. (2019).
Perbandingan Algoritma Naive Bayes dan C4.5 Untuk
Prediksi Kelulusan Mahasiswa Dalam Ruang Belajar
Virtual. Malang: Universitas Negeri Malang.
Barus, S. P. (2022). Penerapan Model Decision Tree pada
Machine Learning untuk Memprediksi Calon Potensial
Mahasiswa Baru. Jurnal Ikraith Informatika
Budi, S. (2017). Text Mining Untuk Analisis Sentimen
Review Film Menggunakan Algoritma K-Means; Text
Mining For Movie Review Sentiment Analysis Using K-
Means Algorithm. Techno.COM.
Chandani, V., Wahono, R. S., & Purwanto. (2015).
Komparasi Algoritma Klasifikasi Machine Learning Dan
Feature Selection pada Analisis Sentimen Review Film.
Journal of Intelligent Systems.
Firmansyah, & Yulianto, A. (2021). Machine Learning
with Decision Tree for Predict Invoice Payment, Case
Study: Gramedia Jakarta. Journal of Informatics and
Telecommunication Engineering.
Fitrianah, D., Dwiasnati, S., H, H. H., & Baihaqi, K. A.
(2021). Penerapan Metode Machine Learning untuk
Prediksi Nasabah Potensial menggunakan Algoritma
Klasifikasi Naïve Bayes. Faktor Exacta.
Fitriyyah, S. N., Safriadi, N., & Pratama, E. E. (2019).
Analisis Sentimen Calon Presiden Indonesia 2019 dari
Media Sosial Twitter Menggunakan Metode Naive
Bayes. Jurnal Edukasi dan Penelitian Informatika.
Ipmawati, J., Kusrini, & Luthfi, E. T. (2017). Komparasi
Teknik Klasifikasi Teks Mining Pada Analisis Sentimen.
Indonesian Journal on Networking and Security, 28.
Izati, N. A., Warsito, B., & Widiharih, T. (2019).
Prediksi Harga Emas Menggunakan Feed Forward Neural
Network Dengan Metode Extreme Learning Machine.
JURNAL GAUSSIAN.
Khoeri, I., & Mulyana, D. I. (2021). Implementasi
Machine Learning dengan Decision Tree Algoritma C4.5
dalam Penerimaan Karyawan Baru pada PT. Gitareksa
Dinamika Jakarta . Jurnal Sosial dan Teknologi
(SOSTECH) , 615.
Kurniawan, R., & Apriliani, A. (2020). Analisis
Sentimen Masyarakat Terhadap Virus Corona
Berdasarkan Opini Dari Twitter Berbasis Web Scrapper.
Jurnal Informatika Sains dan Teknologi.
Lestari, A. R., Perdana, R. S., & Fauzi, M. A. (2017).
Analisis Sentimen Tentang Opini Pilkada Dki 2017 Pada
Dokumen Twitter Berbahasa Indonesia Menggunakan
Naïve Bayes dan Pembobotan Emoji. Jurnal
Pengembangan Teknologi Informasi dan Ilmu Komputer.
Najar, A. M., Sudarsana, I. W., Albab, M. U., &
Andhika, S. (2022). Machine Learning untuk Identifikasi
Jenis Kanker Darah (Leukemia). Vygotsky: Jurnal
Pendidikan Matematika dan Matematika.
Nasution, M. R., & Hayaty, M. (2019). Perbandingan
Akurasi dan Waktu Proses Algoritma K-NN dan SVM
dalam Analisis Sentimen Twitter. Jurnal Informatika.
Oktaviana, N. E., Sari, Y. A., & Indriati. (2019). Analisis
Sentimen Terhadap Kebijakan Kuliah Daring Selama
Pandemi Menggunakan Pendekatan Lexicon Based
Features Dan Support Vector Machine. Jurnal Teknologi
Informasi dan Ilmu Komputer.
Pudjajana, A. M., & Manongga, D. (2018). Sentimen
Analisis Tweet Pornografi Kaum Homoseksual Indonesia
Di Twitter Dengan Naive Bayes. Jurnal SIMETRIS.
Puspita, R., & Widodo, A. (2020). Perbandingan Metode
KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis
Sentimen Pengguna Layanan BPJS. Jurnal Informatika
Universitas Pamulang.
Rahman, M., Ahmed, M. T., Nur, S., & Islam, A. Z.
(2022). The prediction of Coronavirus Disease 2019
Outbreak on Bangladesh Perspective Using Machine
Learning: A Comparative Study. International Journal of
Electrical and Computer Engineering (IJECE).
Ruhyana, N. (2019). Analisis Sentimen Terhadap
Penerapan Sistem Plat Nomor Ganjil/Genap Pada Twitter
Dengan Metode Klasifikasi Naive Bayes. Jurnal IKRA-
ITH Informatika.
Samsir, Ambiyar, V, U., E, F., & W, R. (2021). Analisis
Sentimen Pembelajaran Daring Pada Twitter di Masa
Pandemi COVID-19 Menggunakan Metode Naïve Bayes.
Jurnal Media Informatika Budidarma.
Sari, D. N., Adelia, F., Rosdiana, F., Butar, B. B., &
Hariyanto, M. (2020). Analisa Sentimen Terhadap
Review Produk Kecantikan Menggunakan Metode Naive
Bayes Classifier. Jurnal Informatika Universitas
Muhammadiyah Tangerang.
Sari, F. V., & Wibowo, A. (2019). Analisis Sentimen
Pelanggan Toko Online JD.ID Menggunakan Metode
Naïve Bayes Classifier Berbasis Konversi Ikon Emosi.
SIMETRIS.
Simamora, R. J., Tibyani, & Sutrisno. (2019). Peramalan
Curah Hujan Menggunakan Metode Extreme Learning
Machine. Jurnal Pengembangan Teknologi Informasi dan
Ilmu Komputer.
Sipayung, E. M., Maharani, H., & Zefanya, I. (2016).
Perancangan Sistem Analisis Sentimen Komentar
Pelanggan Menggunakan Metode Naive Bayes Classifier.
Jurnal Sistem Informasi.
Wardani, N. R., & Erfina, A. (2021). Analisis Sentimen
Masyarakat Terhadap layanan Konsultasi Dokter
Menggunakan Algoritma Naive Bayes. SISMATIK
(Seminar Nasional Sistem Informasi dan Manajemen
Informatika) (p. 11). Sukabumi: Universitas Nusa Putra.
Wiyono, S., & Abidin, T. (2018). Perbandingan
Algoritma Machine Learning SVM dan Decision Tree
untuk Prediksi Keaktifan Mahasiswa. Jurnal Dan
Penelitian Teknik Informatika
DOI: http://dx.doi.org/10.33021/itfs.v9i1.5073
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 IT for Society
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
All articles in this journal are indexed in:
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.