
IT FOR SOCIETY, Vol. 09, No. 01
ISSN 2503-2224

22

Web-Based Realtime Course Platform With

Integrated Live Coding Interface

Reinald Chenartha1, Cutifa Safitri2

Faculty of Computing

President University

Cikarang, Indonesia

reinald.chenartha@student.president.ac.id

Abstract— This paper explores an innovative technological

approach to a programming education platform. The platform

aims to enhance the learning experience by integrating web-

based resources with real-time video communication and live

coding. Utilizing a peer-to-peer connection framework, this

method facilitates efficient and direct communication between

instructors and learners, optimizing performance and reducing

latency. The primary goal is to create a dynamic and

collaborative learning environment. Through the integration of

peer-to-peer video chat and an Integrated Development

Environment (IDE), the platform aims to improve real-time

communication, code reviews, and interactive problem-solving,

providing learners with a profound programming learning

experience.

Keywords—peer-to-peer communication, integrated

development environment, electronic learning, collaboration

I. INTRODUCTION

Education in society continues to evolve with
technological advancements, utilizing new methods to
enhance efficiency and effectiveness. Despite the rapid
progress in educational technology, traditional programming
education still faces challenges in providing a deep and
practical learning experience. The conventional model, which
focuses on theoretical instruction, is less effective in
equipping learners with direct skills and real-world problem-
solving abilities. Therefore, students often struggle to
transition from theoretical learning to practical applications in
software development. In response to this change, this thesis
proposes an innovative approach through the design and
implementation of a social education platform that integrates
real-time meeting capabilities and an Integrated Development
Environment (IDE). The goal is to redefine the programming
education experience by incorporating advanced features.

II. LITERATURE REVIEW

A. Related Applications

In terms of development aspects, this application can be
considered inspired by a combination of several aspects from
other existing applications. Fiverr is a digital platform where
freelancers can sell their services or creative work. The
offered services commonly posted on Fiverr vary among
creative works, such as graphic design, animation,

programming, and writing [1]. In addition to creative products
and services, Fiverr is also commonly used by sellers as a
platform to offer their knowledge through teaching services
[2]. However, for this type of service, the implementation of
the teaching process needs to be outsourced by other
applications that enable optimal meeting sessions. Udemy is a
dedicated online learning platform that serves as a virtual
educational ecosystem for instructors and individuals looking
to learn specific subjects [3]. Courses on Udemy are generally
developed in the form of educational videos, meaning the
learning process for each course is conducted in a one-way
communication method [4]. Codecademy is an interactive
online education platform specifically developed for learning
programming [5]. The course content consists of hands-on
practice, quizzes, and also source materials from course
authors. The interactive programming education method used
by Codecademy is considered highly engaging for learners,
along with the gamification of the learning process [6].

B. Development Software

In addition to existing applications, there are also
frameworks or tools whose functionalities provide inspiration
for the conceptual ideas embraced. JavaScript is an object-
oriented programming language commonly used
asynchronously [7]. JavaScript can also be considered a
functional programming language that utilizes many function
calls, whether for callback purposes or other intentions [8].
Node.JS can be defined as a JavaScript runtime with access to
computer I/O systems [9]. Apart from practical reasons, such
as not needing to use multiple languages to build a full-stack
web system, another key component surrounding Node.JS is
its extensive ecosystem [10]. Express.JS can be regarded as a
web framework for Node.JS that provides default
configurations for standard http modules in Node.JS and
inherits middleware properties from the Connect Node.JS
library [11]. MongoDB is a document-oriented database
system, as opposed to a relational database system that uses
table-structured data [12]. On the other hand, Mongoose can
be considered a highly practical Node.JS library used to
communicate with the MongoDB server [13]. Child Process
is a standard library in Node.JS used to access operating
system functionality [14]. This module also enables the ability
to receive command arguments as if using the command-line

23

interface directly and access standard input/output from the
process.

WebSocket API (Application Programming Interface) is
an API used for event-driven communication methods and can
be directed to clients connected to a party acting as a
WebSocket server [15]. WebSocket connections are initiated
using an HTTP request that will remain open after the
initialization process. Because the connection stays open even
after the initialization process, WebSocket clients and servers
can exchange messages as long as the connection is not closed.
WebRTC is a core JavaScript API capable of performing real-
time media and data transfers using peer-to-peer
communication method [16]. WebRTC uses signaling
methods to initialize connections with remote peers. This
signaling method requires a third-party component to send the
necessary information to the remote peer. This third-party
component can be an HTTP request or a WebSocket server.
However, due to the complex network architecture nowadays,
establishing peer connections requires a series of protocols
called ICE (Interactive Connectivity Establishment)
protocols. ICE protocols allow each peer to find the best
connection path to reach each other. In addition to ICE
protocols, modern network architecture also requires STUN
(Session Traversal Utilities for NAT) and TURN (Traversal
Using Relays around NAT) servers in WebRTC
implementations.

III. SYSTEM ANALYSIS

A. System Overview

This course platform is a web-based application that serves
as a space for users to discover instructors and receive real-
time guidance in various skills. The application offers a highly
simple interface, allowing users to play a dual role as both
instructors and students with a single account. In addition to
booking courses from other instructors, users can also provide
courses they want to teach. The real-time mechanism on this
platform includes video chat, audio chat, and text chat
between instructors and students. Although not limited to
technology courses, each course session comes with a simple
online compiler and live coding capabilities for sharing code
in real-time between instructors and students.

Figure 1: Application use case diagram

This application is built with various functionalities. These
functionalities include features that allow each user to create
an account, log into their account, create course instances
where they can become instructors, book courses created by
other users where they can participate as students, receive
notifications whenever other users book their courses, easily
join any course session with the ability to meet instructors or
students in real-time using video and audio chat, share their
screen to their peers to facilitate the course flow depending on
external applications, send text messages through the text chat
interface in each course session, run code on the dedicated
online compiler interface in each course session, and share
their code through a collaborative coding space on the
dedicated online compiler interface.

B. Hardware and Software Requirements

This application has specific hardware requirements for
both the server and client sides. The recommended server
infrastructure utilizes cloud services, specifically the Amazon
Web Services Elastic Compute Cloud (AWS EC2) instance,
for flexibility and ease of setup. The T2 type of EC2 instance
is chosen for this monolithic application, integrating both
backend and frontend, providing suitable resources for
lightweight performance. The application uses WebRTC for
peer-to-peer connections on the client side, supported by
STUN and TURN servers to overcome NAT traversal.
Minimal hardware requirements are selected to ensure smooth
performance on computers connected to the internet with
appropriate software. The server side operates on Ubuntu
Linux, leveraging Node.js for the backend with Express.js,
WebSocket, and Mongoose for communication and
interaction with MongoDB. MongoDB is chosen as the
database due to its document format similar to JSON.
WebRTC on the browser interface enables peer-to-peer

24

connection features, such as video streaming and code
sharing. Python on the server side runs as a parallel process,
allowing users on the client side to write Python scripts with
live-share code features for synchronized code execution
across various Python processes.

IV. SYSTEM DESIGN

A. User Interface Design

This web-based application focuses on user interface
design with consideration for its usability across various
screen widths. Primary considerations involve easy access to
information, intuitive navigation, and a friendly user
experience. The registration and login pages are designed
simply to minimize confusion, while the main page is divided
into three main sections with buttons and cards that facilitate
user interaction. The course creation and course detail dialogs
are designed with a user-friendly interface, simplifying the
course booking and cancellation processes. The meeting
session room, being the most complex dialog, displays
dynamic components and buttons contributing to a feature-
rich meeting experience. This meticulous user interface design
ensures a cohesive and user-friendly experience across
various pages and functionalities within the application.

B. Class Diagram

The application's database schema includes the User
schema, representing each user with properties such as email
address, username, and password. Users can have a one-to-
many relationship with the Course schema and Booked
Course schema, indicating their ability to create multiple
courses and participate in various courses created by others.
The Course schema consists of title, description, instructor,
and a list of course content properties. It forms a one-to-many
relationship with the User schema and the Booked Course
schema. The Course Content schema, used as a sub-document
for the Course schema, includes title, description, and
duration. It forms a one-to-many relationship with the Course
schema and a many-to-many relationship with the Booked
Course schema. The Booked Course schema manages details
such as participating users, start and end times, references to
courses, and a list of references to course content. It serves as
a transactional schema, specifying the date, time, and course
content booked by users, with relationships indicating
connections to users, courses, and course content.

Figure 2: Application Entity relationship diagram (ERD)

V. SYSTEM IMPLEMENTATION

A. User Interface

This web application utilizes HTML for interface
structure, CSS for element design, and JavaScript for interface
logic. The use of Embedded JavaScript (EJS) on the
registration page enables dynamic rendering on the server,
separating content into manageable components and
enhancing modularity. The main page, the user interaction
hub, incorporates Bootstrap 5, FontAwesome, and JQuery to
create a dynamic experience. Dialog boxes, such as course
creation and booking, leverage Bootstrap 5 modal API to
present structured and visually appealing interactions. The
login and registration pages are designed simply with EJS for
dynamic rendering, pure CSS design, and Bootstrap 5 for
interactive elements. The course creation dialog box uses
Bootstrap 5 modal API to add dynamic rows to the course
content table. The course detail and booking dialog boxes use
Bootstrap 5 design and custom CSS, providing
comprehensive information and organizing the booking
process with responsive date and time inputs. The meeting
session room, as a comprehensive feature, uses Bootstrap 5
and custom CSS for its layout and design. Divided into video,
activities, and communication configuration sections, it
provides an intuitive interface with visual and interactive
elements. Overall, the application combines various
technologies to create an engaging and functional user
interface.

B. Application Details

This web-based application combines the power of
JavaScript with Node.js as the runtime on both the client and
server sides, leveraging various libraries to provide efficient
execution. On the server side, initialization involves
configuring the Express server to handle routes and
WebSocket to support real-time communication. The use of
MongoDB as a non-relational database system, accessed
through Mongoose as an Object-Document Mapper (ODM),
provides a solid structure for data storage and retrieval.

The user registration process begins by rendering the
registration page using EJS templates and Express as the
route. The submitted data is processed on the server using the

25

Mongoose User model, verifying the existence of the user and
creating a new entry if the entered data is valid. The login
process follows a similar step, with Mongoose and Express
user session used for security and session management.

Rendering the list of courses involves an API route that
returns course data, with client-side processing using jQuery
to generate dynamic HTML elements. Course creation allows
users to create courses through a dialog box with client-side
validation, and the server handles the creation of a new course
entry in the database. Booking a course involves submitting a
form with details to the server via a POST request, and the
server responds by creating a new Booked entry, notifying the
course creator via WebSocket, and updating the booked
courses section for the user. Canceling a booked course allows
users to cancel their courses, triggering updates on the course
creator's notifications and the user's booked courses.

The meeting session mechanism uses WebRTC for real-
time communication, including video communication and
data channels. The signaling process involves the exchange of
offers and answers between peers through the WebSocket
server, while ICE candidates are exchanged to ensure optimal
network connectivity. The live coding mechanism relies on
the Python runtime on the server, where the client sends
Python scripts and input via AJAX and WebSocket, and the
server executes the script in a secure environment, providing
output back to the client through HTTP response. WebRTC is
also used here to facilitate a collaborative experience with
other peers in live coding. With these features, the application
provides a comprehensive and dynamic web experience with
user registration, course management, real-time
communication, and live coding capabilities.

VI. SYSTEM TESTING

System testing for this application was conducted
manually, avoiding the use of specific testing frameworks.
The testing environment was set up on the client-side device
with specific hardware and software configurations, including
an AMD Ryzen 5 3550H CPU, AMD Radeon Vega Mobile
Gfx GPU, 8GB + 8GB DDR4 Dual 2.4 GHz RAM, Windows
11 Home Operating System, and Google Chrome Internet
Browser. This manual testing process was carried out
following a test-driven development methodology, conducted
iteratively during the development phase. This approach helps
ensure systematic and smooth testing, with positive results
associated with careful attention to hardware specifications
and the selection of commonly used operating systems and
internet browsers. Overall, this approach enhances the
robustness and reliability of the application by creating a
testing environment that reflects real-world scenarios.

VII. CONCLUSION AND FUTURE WORKS

A. Conclusion

This web-based application serves as a versatile platform
facilitating the creation of personalized learning journeys in
real-time interactions between instructors and students. The
development of the application is grounded in JavaScript,
utilized for both the frontend and backend components.
Notably, the application integrates a non-relational database
system and leverages several libraries, including an Object-
Document Mapper (ODM), to establish a seamless connection
with the database. Drawing inspiration from features found in
prior applications, such as real-time video chat and
programming functionalities, the final product has

successfully materialized, staying true to its initial conceptual
foundations. The development process adhered to the outlined
plan, incorporating essential pre-planned tools and
technologies, resulting in a well-rounded application that
aligns with its intended purpose of fostering dynamic and
customized learning experiences.

B. Future Works

The initial release of the application achieved its technical
goals, but there is room for improvement and additional
features to enhance user experience and marketability.
Notably, the user interface design needs refinement, and
introducing a payment method for course content could boost
the application's appeal. Considering potential use in
educational institutions, modifications are needed to adapt to
one-to-many learning settings. Scaling up the meeting room
functionality, adjusting peer connection initiation, and
refining the video chat interface would be essential.
Integration with existing educational institution systems is
another possibility, requiring the development of new REST
API routes for seamless data exchange.

To enhance the Integrated Development Environment
(IDE) feature, a novel approach involves creating separate
containers or virtual spaces for each IDE session, granting
users access to isolated terminals with distinct root directories.
This not only allows for greater program variety and user
security by avoiding program execution on the server but also
enables the installation of various programming languages
within each container. Future enhancements could involve
incorporating more advanced development interfaces like
Jupyter Notebook and web programming, providing users
with a broader understanding of programming languages and
associated tools, extending beyond basic terminal-based
applications to deliver more value in diverse programming
scenarios.

VIII. REFERENCES

[1] D. D. Green, J. McCann, T. Vu, N. Lopez and S.
Ouattara, "Gig Economy and the Future of Work: A
Fiverr.com Case Study," Management and Economics
Research Journal, Vol. 4, pp. 281-288, 2018.

[2] B. Maina, "How to Teach On Fiverr – A Step by Step
Guide," 16 June 2022. [Online]. Available:
https://www.linkedin.com/pulse/how-teach-fiverr-step-
guide-belinda-maina/. [Accessed 28 November 2023].

[3] B. Panth and R. Maclean, Anticipating and Preparing
for Emerging Skills and Jobs, Asian Development
Bank, 2020.

[4] R. J. Eusebio Jr., "Computer Engineering Students
Performance Using the Udemy and Khan Academy
Videos in Learning Differential Equations," in 4th
INTERNATIONAL CONGRESS ON ACTION
RESEARCH, ACTION LEARNING, Manila, 2019.

[5] J. Sharp, "Using Codecademy Interactive Lessons as an
Instructional Supplement in a Python Programming
Course," Information Systems Education Journal, vol.
17, pp. 20-28, 2019.

[6] R. Shen and M. J. Lee, "Learners’ Perspectives on
Learning Programming from Interactive Computer
Tutors in a MOOC," 2020 IEEE Symposium on Visual

26

Languages and Human-Centric Computing (VL/HCC),
2020.

[7] D. Flanagan, JavaScript: The Definitive Guide, Sixth
Edition, M. Loukides, Ed., O’Reilly Media, Inc., 2011,
pp. 1-8.

[8] J. Resig and B. Bibeault, "Enter the ninja," in Secrets of
the JavaScript Ninja, Manning Publications Co., 2013,
pp. 3-12.

[9] M. Cantelon, M. Harter, T. Holowaychuk and N.
Rajlich, Node.js in Action, Shelter Island: Manning
Publications Co., 2014.

[10] M. Casciaro, Node.js Design Patterns, Birmingham:
Packt Publishing Ltd., 2014.

[11] A. Mardan, Pro Express.js, Springer Science+Business
Media New York, 2014.

[12] K. Chodorow and M. Dirolf, MongoDB: The Definitive
Guide, O’Reilly Media, Inc., 2010.

[13] E. M. Hahn, Express in Action, Shelter Island: Manning
Publications Co., 2016.

[14] S. Buna, "Node.js Child Processes: Everything you need
to know," 9 June 2017. [Online]. Available:
https://medium.com/edge-coders/node-js-child-
processes-everything-you-need-to-know-
e69498fe970a. [Accessed 28 November 2023].

[15] A. Lombardi, WebSocket, y O’Reilly Media, Inc., 2015.

[16] S. Loreto and S. P. Romano, Real-Time
Communication with WebRTC, O’Reilly Media, Inc.,
2014.

