Isotropic Potential Model of Hydrogen Physisorption on Exohedral of Single Walled Carbon Nanotubes with Various Diameter
Abstract
Abstract. This work presents step-by-step procedure of modeling accurate interaction potential energy between hydrogen and outer surface of zigzag Single Walled Carbon Nanotube (CNT) as a function of its diameter. First principles calculations at MP2 method level and def2-SVP basis-set were performed to predict the interaction potential energy of hydrogen gas molecule on outer surface of CNT cluster model. The result shows that the physisorption energy is ranging between 1.05 kcal/mol to 1.14 kcal/mol. Using force-matching method, Lennard-Jones potential parameters were approximated for interaction between united-atom model of hydrogen molecules and the CNT. Assuming constant σ = 3.2 Å, the result shows that the ε parameter can be defined as a function of CNT diameter.
Keywords. Hydrogen, Carbon Nanotube, First principles, Ab initio, Binding Energy, Force-matching Method, Lennard-Jones Potential
Full Text:
PDFReferences
References
Banerjee S, Puri IK (2008) Enhancement in hydrogen storage in carbon nanotubes under modified conditions. Nanotechnology. 19(15):155702. doi:10.1088/0957-4484/19/15/155702.
Belof JL, Stern AC, Eddaoudi M, Space B (2007) On the mechanism of hydrogen storage in a metal-organic framework material. Journal of the American Chemical Society. 129(49):15202-15210. doi:10.1021/ja0737164.
Belof JL, Stern AC, Space B (2008) An accurate and transferable intermolecular diatomic hydrogen potential for condensed phase simulation. Journal of Chemical Theory and Computation. 4(8):1332-1337. doi:10.1021/ct800155q.
Belof JL, Stern AC, Space B (2009) A predictive model of hydrogen sorption for metal-organic materials. Journal of Physical Chemistry C. 113(21):9316-9320. doi:10.1021/jp901988e.
Buch V (1994) Path integral simulations of mixed para‐D2 and ortho‐D2 clusters: The orientational effects. Journal of Chemical Physics. 100(10):7610- 7629. doi:10.1063/1.466854.
Cheng HM, Yang QH, Liu C (2001) Hydrogen storage in carbon nanotubes. Carbon. 39(10):1447-1454. doi:10.1016/S0008-6223(00)00306-7.
Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature. 386(6623):377–379. doi:10.1038/386377a0.
Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theoritical Chemistry Accounts. 97(1-4):119-124. doi:10.1007/s002140050244.
Ercolessi F, Adams JB (1994) Interatomic Potentials from First-Principles Calculations: The Force-Matching Method. Europhysics Letters. 26(8):583. doi:10.1209/0295-5075/26/8/005.
Huarte-Larranaga F, Alberti M (2007) A molecular dynamics study of the distribution of molecular hydrogen physisorbed on single walled carbon nanotubes. Chemical Physics Letter. 445(4-6):227-232. doi:10.1016/j.cplett.2007.07.083.
Knippenberg MR, Stuart SJ, Cheng H (2008) Molecular dynamics simulations on hydrogen adsorption in finite single walled carbon nanotube bundles. Journal of Molecular Modeling. 14(5):343-351. doi:10.1007/s00894-008-0275-2.
Kostov MK, Cheng H, Cooper AC, Pez GP (2002) Influence of carbon curvature on molecular adsorptions in carbon-based materials: A force field approach. Physical Review Letters. 89(14):146105. doi:10.1103/PhysRevLett.89.146105.
Ledesma-orozco E, Aceves SM, Espinosa-loza F (2010) Development of dual volume cryogenic hydrogen storage system. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). 3(PARTS A AND B):797-804. doi:10.1115/IMECE2010-39795.
Li J, Furuta T, Goto H, Ohashi T, Fujiwara Y, Yip S (2003) Theoritical evaluation of hydrogen storage capacity in pure carbon nanostructures. Journal of Chemical Physics. 119(4):2376-2385. doi:10.1063/1.1582831.
Lin Y, Mao WL, Mao HK (2009) Storage of molecular hydrogen in an ammonia borane compound at high pressure. Proceedings of the National Academy of Sciences of the United States of America. 106(20):8113-8116. doi:10.1073/pnas.0903511106.
Lithoxoos GP, Samios J (2008) Investigation of Silicon Model Nanotubes as Potential Candidate Nanomaterials for Efficient Hydrogen Storage: A Combined Ab Initio/Grand Canonical Monte Carlo Simulation Study. Journal of Physical Chemistry C. 112(43):16725-16728. doi:10.1021/jp805559a.
Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus M S (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science. 286(5442):1127-1129. doi:10.1126/science.286.5442.1127.
Mahdizadeh SJ, Goharshadi EK (2014) Hydrogen storage on silicon, carbon, and silicon carbide nanotubes: A combined quantum mechanics and grand canonical Monte Carlo Simulation study. International Journal of Hydrogen Energy. 39(4):1719-1731. doi:10.1016/j.ijhydene.2013.11.037.
McLaughlin K, Cioce CR, Belof JL, Space B (2012) A molecular H 2 potential for heterogeneous simulations including polarization and many-body van der Waals interactions. Journal of Chemical Physics. 136(19):194302. doi:10.1063/1.4717705.
Møller Chr, Plesset MS (1934) Note on an Approximation Treatment for Many-Electron Systems. Physical Review. 46:618. doi:10.1103/PhysRev.46.618.
Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: A review. International Journal of Hydrogen Energy. 32(9):1121-1140. doi:10.1016/j.ijhydene.2006.11.022.
Tangney P (2006) On the theory underlying the Car-Parrinello method and the role of the fictitious mass parameter. Journal of Chemical Physics. 124(4):044111. doi:10.1063/1.2162893.
Turney JM, Simmonett AC, Parrish RM, Hohenstein EG, Evangelista FA, Ferman JT, et.al. (2011) Psi4: an open-source ab initio electronic structure program. WIREs Computational Molecular Science. 2(4):556-565. doi:10.1002/wcms.93.
Veziroglu TN, Barbir F (1992) Hydrogen: the wonder fuel. International Journal of Hydrogen Energy. 17(6):391-404. doi:10.1016/0360-3199(92)90183-W.
Veziroglu TN, Sahin S (2008) 21st Century’s energy: hydrogen energy system. Energy Conversion Management. 49(7):1820-1831. doi:10.1016/j.enconman.2007.08.015.
Xu WC, Takahashi K, Matsuo Y, Hattori Y, Kumagai M, Ishiyama S, et al. (2006) Investigation of hydrogen storage capacity of various carbon materials. International Journal of Hydrogen Energy. 32(13):2504 – 2512. doi:10.1016/j.ijhydene.2006.11.012.
Zheng J, Liu X, Xu P, Liu P, Zhao Y, Ya¬ng J (2012) Development of high pressure gaseous hydrogen storage technologies. International Journal of Hydrogen Energy. 37(1):1048-1057. doi:10.1016/j.ijhydene.2011.02.125.
DOI: http://dx.doi.org/10.33021/jmem.v1i01.36
Refbacks
- There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-NonCommercial 4.0 International License