Penurunan Ukuran Butir Serbuk Besi dengan Ball Milling 744 rpm dan Ball to Powder Weight Ratio 1:5

Haris Cahyo Triatmono, Muslimin Muslimin, Lydia Anggraini

Abstract


Creating a magnet with powder metallurgy technology, the materials to be processed must be available in powder form with a relatively very fine size, in micrometers (μm). In the magnetism of materials, grinding the material to obtain a very fine powder size is intended to obtain a magnetic material powder having a single domain. One tool commonly used to reduce the size of the powder to reach the size of a micrometer (μm) is a ball milling machine. This tool works by using hard balls in a drum. The balls are clashing each other with ground powder until the powder size becomes very small. Ball milling is using a strong material SS400, so it is expected to last long. While the special drum uses a base material of metal that is non-magnetic based Austenitic Manganese Steel. Ball uses a Ni-Hard ball. The AC motor measured with a stroboscope while carrying the load is 744 rpm. The process of smoothing that occurs inside the tube when the machine is run is the occurrence of collisions between Ni-Hard balls with the best grind sand is 83.3 grams with the number of Ni-Hard ball 101 fruit with a diameter of 10 mm and 75 pieces with a diameter of 11 mm, with using a 1:5 ratio. The process of shooting using Keyence optical microscope VHX 5000 with 200x bundle. Significant size changes occur with grinding with 10 mm diameter Ni-Hard ball from 15 minutes to 45 minutes. Then by using a Ni-Hard ball diameter of 11 mm also changed although not too significant.

Full Text:

PDF

References


Arie Fiandimas, Azwar Manaf. 2003. Pembuatan Magnet Permanen Barium Heksaferit Berbahan Baku Mill Scale Dengan Teknik Metalurgi Serbuk,Jurnal Sains Materi Indonesia (Indonesian Journal of Material Science),Vol. 5, No. 1, hal. 45-5.

Dunlop, David, J. 1997. Rock Magnetism : Fundamentals and Fronteers, Cambridge University Press, United Kingdom.

Goldman, Alex. 1991. Modern Ferrite Technology, Van Nostrand Reinhold, New York.

Halliday, D. dan Resnick, R. 1989. Fisika Jilid 2. Terjemahan Pantur Silaban dan Erwin Sucipto. Jakarta: Erlangga.

Sugiarto, Untung. 2003. Proses Oksidasi Magnetit dan Karakterisasi Hasil-Hasilnya Dari Pasir Besi Pantai Bayuran Jepara Jawa Tengah. Skripsi.Jurusan Fisika FMIPA UNNES: Semarang.

Smallman, R. E. dan R. J. Bishop. 1991. Metalurgi Fisik Modern dan RekayasaMaterial. Edisi keenam. Terjemahan Sriati Djaprie. Jakarta : Erlangga

Ridwan, Grace, Mujamilah, 2003. Sintesis Bahan Magnet Barium Hexaferrite Memanfaatkan Sumber Daya Alam Lokal, Jurnal Sains Materi Indonesia(Indonesian Journal of Material Science), Vol. 5, No. 1, hal. 29-33.

Yulianto. 2002. Studi Prelimier Mineral Magnetik (Tinjauan Kasus di JawaTengah), Makalah diseminarkan di Laboratorium Kemagnetan Bahan Jurusan Fisika UNNES.

Yulianto, A., Satria Bijaksana, W. Loeksmanto, Daniel Kurnia. 2003. Produksi Hematit (αFe2O3) dari Pasir Besi: Pemanfaatan Potensi Alam sebagai Bahan Industri Berbasis Sifat Kemagnetan, Jurnal Sains MateriIndonesia (Indonesian Journal of Material Science), Vol. 5, No. 1, hal.51-54.




DOI: http://dx.doi.org/10.33021/jmem.v2i01.320

Refbacks

  • There are currently no refbacks.



This work is licensed under a
Creative Commons Attribution-NonCommercial 4.0 International License