Online Shopping Website Analysis for Marketing Strategy Using Clickstream Data and Extra Trees Classifier Algorithm
Abstract
Keywords
Full Text:
PDFReferences
D. Ali, M. B. Hayat, L. Alagha, & O. K. Molatlhegi, ” An evaluation of machine learning and artificial intelligence models for predicting the flotation behavior of fine high-ash coal”, Advanced Powder Technology, vol. 29, no. 12, pp. 3493-3506, 2018, DOI: https://doi.org/10.1016/j.apt.2018.09.032
R. Atanassov, P. Bose, M. Couture, A. Maheshwari, P. Morin, M. Paquette, M. Smid, & S. Wuhrer, ”Algorithms for optimal outlier removal”, Journal of Discrete Algorithms, vol. 7, no. 2, pp. 239-248, 2009, DOI: https://doi.org/10.1016/j.jda.2008.12.002
M. C. Belavagi and B. Muniyal, ” Performance Evaluation of Supervised Machine Learning Algorithms for Intrusion Detection”, Procedia Computer Science, vol. 89, pp. 117-123, 2016, DOI: https://doi.org/10.1016/j.procs.2016.06.016
C. Chatfield, ”Exploratory data analysis”, European Journal of Operational Research, vol. 23, no. 1, pp. 5-13, Jan 1986,
DOI: https://doi.org/10.1016/0377-2217(86)90209-2
Clickstream Data For Online Shopping : https://archive.ics.uci.edu/ml/datasets/clickstream+data+for+online+shopping
P. Geurts, D. Ernst, & L. Wehenkel,” Extremely randomized trees”, Machine Learning, vol. 63, pp. 3-42, 2006,
DOI: https://doi.org/10.1007/s10994-006-6226-1
D. J. Hand, P. Christen, & N. Kirielle, “F*: an interpretable transformation of the F-measure”, Mach Learn, vol. 110, pp. 451–456, 2021, https://doi.org/10.1007/s10994-021-05964-1 .
I. Jenhani, N. B. Amor, & Z. Elouedi, ” Decision trees as possibilistic classifiers”, International Journal of Approximate Reasoning, vol. 48, no. 3, pp. 784-807, 2008, DOI: https://doi.org/10.1016/j.ijar.2007.12.002
T. F. Laura, J. F. Kevin, & R. B. J. Katherine, “Independent, Dependent and Other Variables in Healthcare and Chaplaincy Research”. Journal of Health Care Chaplaincy, pp. 161-170, 2014, DOI : http://dx.doi.org/10.1080/08854726.2014.959374
Y. J. Lim, A. Osman, S. N. Salahuddin, A. R. Romle, & S. Abdullah, ”Factors Influencing Online Shopping Behavior: The Mediating Role of Purchase Intention,” Procedia Economics and Finance, vol. 35, pp. 401-410, 2016, DOI: https://doi.org/10.1016/S2212-5671(16)00050-2
S. Manochandar and Punniyamoorthy, M., ” Scaling feature selection method for enhancing the classification performance of Support Vector Machines in text mining”, Computers & Industrial Engineering, vol. 124, pp. 139-156, 2018, DOI: https://doi.org/10.1016/j.cie.2018.07.008
A. Rogier, T. Donders, Geert J. M. G. van der Heijden, T. Stijnen, & K. G. M. Moons, ”Review: A gentle introduction to imputation of missing values,” Journal of Clinical Epidemiology, vol. 59, no. 10, pp. 1087-1091, Oct 2006,
DOI: https://doi.org/10.1016/j.jclinepi.2006.01.014
J. J. Salazar, L. Garlan, J. Ochoa, & M. J. Pyrcz,” Fair train-test split in machine learning: Mitigating spatial autocorrelation for improved prediction accuracy”, Journal of Petroleum Science and Engineering, 2021, DOI: https://doi.org/10.1016/j.petrol.2021.109885
K. Singh, M. Elhoseny, A. Singh, & A. Elngar, Machine Learning and the Internet of Medical Things in Healthcare, Academic Press, 2021, pp. 89-111, https://doi.org/10.1016/B978-0-12-821229-5.00003-3.
S. Supriyadi, Y. Nurhadryani, & A. I. Suroso, "Website Content Analysis Using Clickstream Data and Apriori Algorithm." TELKOMNIKA (Telecommunication, Computing, Electronics and Control), vol. 16, no. 5, pp. 2118-2126, Oct. 2018,
DOI: http://dx.doi.org/10.12928/telkomnika.v16i5.7573
DOI: http://dx.doi.org/10.33021/jafrm.v1i1.3676
DOI (PDF): http://dx.doi.org/10.33021/jafrm.v1i1.3676.g1152
Refbacks
- There are currently no refbacks.